Have a personal or library account? Click to login
Solving Elliptic Curve Discrete Logarithm Problem on Twisted Edwards Curves Using Quantum Annealing and Index Calculus Method Cover

Solving Elliptic Curve Discrete Logarithm Problem on Twisted Edwards Curves Using Quantum Annealing and Index Calculus Method

Open Access
|Oct 2024

References

  1. AMADORI, A.—PINTORE, F.—SALA, M.: On the discrete logarithm problem for prime-field elliptic curves, Finite Fields and Their Applications 51 (2018), 168–182.
  2. BERNSTEIN, D. J.—BIRKNER, P.—JOYE, M.—LANGE, T.—PETERS, C.: Twisted Edwards Curves.In: Progress in Cryptology — AFRICACRYPT 2008 (S. Vaudenay, ed.), Springer-Verlag, Berlin 2008, pp. 389–405.
  3. BERNSTEIN, D. J.—LANGE, T.: Faster Addition and Doubling on Elliptic Curves. In: Advances in Cryptology — ASIACRYPT 2007 (K. Kurosawa, ed.), Springer-Verlag, Berlin, 2007.
  4. BETTALE, L.—FAUGERE, J.-C.—PERRET, L.: Hybrid approach for solving multivariate systems over finite fields,J. Math. Cryptol. 3 (2009), 177–197.
  5. BUREK, E.—WROŃSKI, M.—MAŃK, K.—MISZTAL, M.: Algebraic attacks on block ciphers using quantum annealing, IEEE Transactions on Emerging Topics in Computing 10 (2022), 678–689.
  6. CHEN, Y.-A.—GAO, X.-S.: Quantum algorithm for Boolean equation solving and quantum algebraic attack on cryptosystems, J. Syst. Sci. Complex. 35 (2022), 373–412.
  7. CHEN, Y.-A.—GAO, X.-S.—YUAN, C.-M.: Quantum algorithm for optimization and polynomial system solving over finite field and application to cryptanalysis,arXivpreprint arXiv:1802.03856, 2018.
  8. DIEM, C.: The GHS attack in odd characteristic, J. Ramanujan Math. Soc. 18 (2003), 1–32.
  9. DIEM, C.: On the discrete logarithm problem in elliptic curves, Compos. Math.147 (2011), 75–104.
  10. DRIDI, R.—ALGHASSI, H.: Prime factorization using quantum annealing and computational algebraic geometry, Scientific Reports 7, Article no. 43048 (2017), 1–10; https://doi.org/10.1038/srep43048
  11. DRY LO, R.—KIJKO, T.—WROŃSKI, M.: Determining formulas related to point compression on alternative models of elliptic curves, Fundamenta Informaticae 169 (2019), 285–294.
  12. EDWARDS, H. M.: A normal form for elliptic curves, Bull. Amer. Math. Soc. 44 (2007), 393–422.
  13. FAUGÈRE, J.-C.—GAUDRY, P.—HUOT, L.—RENAULT, G.: Using symmetries in the index calculus for elliptic curves discrete logarithm, J. Cryptology 27 (2014), 595–635.
  14. GAUDRY, P.: Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem, Journal of Symbolic Computation 44 (2009), 1690–1702.
  15. JIANG, S.—BRITT, K. A.—MCCASKEY, A. J.—HUMBLE, T. S.—KAIS, S.: Quantum annealing for prime factorization, Scientific Reports 8 (2018), 1–9; https://doi.org/10.1038/s41598-018-36058-z
  16. KUDO, M.—YOKOTA, Y.—TAKAHASHI, Y.—YASUDA, M.: Acceleration of index calculus for solving ECDLP over prime fields and its limitation.In: Cryptology and Network Security (J. Camenisch, P. Papadimitratos, eds.), Springer International Publishing. Cham, 2018. pp. 377–393.
  17. LENSTRA JR, H. W.: Factoring integers with elliptic curves, Ann. Math. (1987), 649–673.
  18. MONTGOMERY, P. L.: Speeding the Pollard and elliptic curve methods of factorization, Math. Comput. 48 (1987), 243–264.
  19. PETIT, C.—KOSTERS, M.—MESSENG, A.: Algebraic approaches for the elliptic curve discrete logarithm problem over prime fields,In: Public-Key Cryptography — PKC 2016 (C.-M. Cheng, K.-M. Chung, G. Persiano, B.-Y. Yang, eds.), Springer-Verlag, Berlin, 2016, pp. 3–18.
  20. SEMAEV, I.: Summation polynomials and the discrete logarithm problem on elliptic curves, Cryptology ePrint Archive, Paper 2004/031, (2004); https://ia.cr/2004/031
  21. WANG, B.—HU, F.—YAO, H.—WANG, C.: Prime factorization algorithm based on parameter optimization of Ising model, Scientific Reports 10 (2020), 1–10; https://doi.org/10.1038/s41598-020-62802-5
  22. WROŃSKI, M.: Index calculus method for solving elliptic curve discrete logarithm problem using quantum annealing.In: International Conference on Computational Science, Springer-Verlag, 2021. pp. 149–155.
  23. WROŃSKI, M.: Index calculus method for solving elliptic curve discrete logarithm problem using quantum annealing - example 2021; https://github.com/Michal-Wronski/ECDLP-index-calculus-using-QUBO
  24. WROŃSKI, M.: Practical solving of discrete logarithm problem over prime fields using quantum annealing. In: International Conference on Computational Science, Springer-Verlag, 2022, pp. 93–106.
DOI: https://doi.org/10.2478/tmmp-2024-0021 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 67 - 84
Submitted on: Oct 5, 2022
Accepted on: Aug 19, 2024
Published on: Oct 29, 2024
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Lukasz Dzierzkowski, Michał Wroński, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.