Have a personal or library account? Click to login
Nonlinear Elliptic Equations with Variable Exponents Anisotropic Sobolev Weights and Natural Growth Terms Cover

Nonlinear Elliptic Equations with Variable Exponents Anisotropic Sobolev Weights and Natural Growth Terms

By: Mokhtar Naceri  
Open Access
|Oct 2024

References

  1. ARCOYA, D.—BOCCARDO, L.: Regularizing effect of the interplay between coefficients in some elliptic equations, J. Funct. Anal. 268 (2015), 1153–1166.
  2. BOCCARDO, L.—MURAT, F.: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), 581–597.
  3. BOCCARDO, L.—IMPARATO, P.—ORSINA, L.: Nonlinear weighted elliptic equations with Sobolev weights, Boll. Unione Mat. Ital. 15 (2022), no. 4, 503–514.
  4. BROWDER, F. E. : Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862–874.
  5. CRUZ-URIBE, D.—FIORENZA, A.—RUZHANSKY, M.—WIRTH, J.: Variable Lebesgue Spaces and Hyperbolic Systems. Advanced Courses in Mathematics - CRM Barcelona, Birkh¨auser, Basel, 2014.
  6. DIENING, L.—HARJULEHTO, P.— HÄSTÖ, P.– RUZICKA, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Math., Vol. 2017, Springer, Heidelberg, 2011.
  7. DU, Y. H.—GUO, Z. M.: Finite Morse index solutions of weighted elliptic equations and the critical exponents, Calc. Var. Partial Differential Equations 54 (2015), no. 3, 3161–3181.
  8. FAN, X.: Anisotropic variable exponent Sobolev spaces and −→ p (x)−Laplacian equations, Complex Var. Elliptic Equ. 56 (2011), no. 7–9, 623–642. https://doi.org/10.1080/17476931003728412
  9. FAN, X.—ZHAO, D.: On the spaces Lp(x)(Ω) and W 1,p(x)(Ω), J. Math. Anal. Appl, 263 (2001), 424–446.
  10. FLORICA, C.ĈIRSTEA—YIHONG, DU: Isolated singularities for weighted quasilinear elliptic equations, J. Funct. Anal. 259 (2010), 174–202.
  11. GUO, Z. M.— WAN, F. S.: Further study of a weighted elliptic equation, Sci. China Math, 60 (2017), 2391–2406.
  12. HO, K.—SIM, I.: A-priori bounds and existence for solutions of weighted elliptic equations with a convection term, Adv. Nonlinear. Anal. 6 (2017), no. 4, 427–445. https://www.degruyter.com/document/doi/10.1515/anona-2015-0177/html
  13. MINTY, G. J.: On a “monotonicity” method for the solution of nonlinear equations in Banach spaces, in: Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1038–1041.
  14. NACERI, M.: Existence results for anisotropic nonlinear weighted elliptic equations with variable exponents and L1 data, in: Proceedings of the Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science, 23 (2022), no. 4, pp. 337–346.
  15. NACERI, M.: Anisotropic nonlinear weighted elliptic equations with variable exponents, Georgian Math. J. 30 (2023), no. 2, 277–285.
  16. NACERI, M.: Anisotropic nonlinear elliptic equations with variable exponents and two weighted first order terms. Filomat 38 (2024), no. 3, 1043–1054.
  17. NACERI, M.— BENBOUBKER, M. B.: Distributional solutions of anisotropic nonlinear elliptic systems with variable exponents: existence and regularity,Adv. Oper. Theory 7 (2022), article. 17, 1–34. https://doi.org/10.1007/s43036-022-00183-4
  18. NACERI, M.: Anisotropic nonlinear elliptic systems with variable exponents, degenerate coercivity and Lq(·) data, Ann. Acad. Rom. Sci. Ser. Math. Appl. 14 (2022), no. 1–2, 107–140.
  19. NACERI, M.: Singular Anisotropic Elliptic Problems with Variable Exponents, Mem. Differ. Equ. Math. Phys. 85(2022), no. 8, 119–132.
DOI: https://doi.org/10.2478/tmmp-2024-0020 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 109 - 126
Submitted on: Dec 29, 2023
Accepted on: Jul 9, 2024
Published on: Oct 1, 2024
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Mokhtar Naceri, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.