Have a personal or library account? Click to login
A Fixed Point Approach to the Stability of a Quadratic Functional Equation in Modular Spaces Without Δ2-Conditions Cover

A Fixed Point Approach to the Stability of a Quadratic Functional Equation in Modular Spaces Without Δ2-Conditions

Open Access
|Oct 2024

References

  1. ABDOU, A. A. N.—KHAMSI, M. A.: Fixed point theorems in modular vector spaces, J. Nonlinear Sci. Appl. 10 (2017), no. 8, 4046–4057.
  2. M. A. ALMALAHI—K. A. ALDWOAH—K. SHAH—T. ABDELJAWAD: Stability and numerical analysis of a coupled system of piecewise atangana–baleanu fractional differential equations with delays, Qualitative Theory of Dynamical Systems, 23 2024, no. 3, 1–27.
  3. BANTAOJAI, T.—SUANOOM, C.: Stability of a generalization of cauchy’s and the quadratic functional equations in quasi-banach spaces, Thai J. Math. 18 (2020), no. 3, 963–975.
  4. BETTENCOURT, G. H.—MENDES, S.: On the stability of a quadratic functional equation over non-archimedean spaces, 35 (2021), no. 8, 2693–2704.
  5. BODAGHI, A.—MOSHTAGH, H.—MOUSIVAND, A. ET AL: Characterization and stability of multi-Euler-Lagrange quadratic functional equations, J. Function Spaces 2022, paper no. 3021457.
  6. BOYKOV, I. V.—ROUDNEV, V. A.—BOYKOVA, A. I.: Stability of solutions of systems of Volterra integral equations, Appl. Math. Comput. 475 (2024), paper no. 128728.
  7. CADARIU L.—RADU, V.: Fixed points and the stability of Jensen’s functional equation, J. Inequal. Pure Appl. Math. 4 (2003), no. (1), article 4, 7 pp.
  8. CZERWIK, S.: On the stability of the quadratic mapping in normed spaces, In: Abhandlungen aus dem Mathematischen Seminar der Universit¨at Hamburg, Vol. 62, Springer--Veralg, Berlin, 1992, pp. 59–64.
  9. DONG, Y.: On approximate isometries and application to stability of a functional equation, J. Math. Anal. Appl. 426 (2015), no. 1, 125–137.
  10. DUTTA, H.—SENTHIL KUMAR, B. V.—SABARINATHAN, S.: Fuzzy stabilities of a new hexic functional equation in various spaces, Analele ¸stiint¸ifice ale Universităt¸ii “Ovidius” Constant¸a. Seria Matematică 30 (2022), no. 3, 143–171.
  11. EL-FASSI, IZ-IDDINE: Approximate solution of a generalized multi-quadratic type functional equation in Lipschitz spaces, J. Math. Anal. Appl. 519 (2023), no. 2, paper no. 126840, 16 pp.
  12. ELUMALAI, P.—SANGEETHA, S.—SELVAN, A.P.: Fixed point approach to the stability of a cubic and quartic mixed type functional equation in non-Archimedean spaces, J. Math. Comput. Sci, 33 (2024), no. 2, 124–136.
  13. GAVRUTA, P.: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431–436.
  14. GOVINDAN, V.—PARK, C.—PINELAS, S.—RASSIAS T. M.: Hyers-Ulam stability of an additive-quadratic functional equation,Cubo (Temuco), 22 (2020), no. 2, 233–255.
  15. GRABIEC, A.: The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen 48 (1996), no. 3–4, 217–235.
  16. GRUBER,P.M.: Stability of isometries,Trans.Amer. Math.Soc. 245 (1978), 263–277.
  17. GÜNDOĞDU, H,—ÖZTÜRK, M. —GÖZÜKIZIL,Ö. F : Fixed point theorems of new generalized c-conditions for (psi; gamma)-mappings in modular metric spaces and its applications, Nonlinear Anal. Model. Control 28 (2023), 1–22.
  18. HYERS, D.-H.: On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 1941, 222–224.
  19. JUNG, S.: Quadratic functional equations of pexider type, Int.J.Math. Math. Sci. 24 (2000), no. 5, 351–359.
  20. JUNG, S.: Hyers-Ulam stability of linear differential equations of first order, II, Appl. Math. Lett. 19 (2006), no. 9, 854–858.
  21. CHUGH, J. R.—JAISWAL, S.—DUBEY, R.: Stability of various functional equations in non-Archimedean (n,β)-normed spaces, The Journal of Analysis, 30 (2022), no. 4, 1653–1669.
  22. JAYARAMAN, U.—KALAICHELVAN, R.: Generalized Hyers-Ulam-Rassias stability of an Euler-Lagrange type cubic functional equation in non-Archimedean quasi-Banach spaces, Mathematical Modelling of Engineering Problems 11 (2024), no. 4, 1021–1028.
  23. KARAPINAR, E.—AKSOY,Ü—FULGA, A.—ERHAN, I. M.: Fixed point theorems for mappings with a contractive iterate at a point in modular metric spaces, Fixed Point Theory 23 (2022), no. 2, 519–531.
  24. KAWANO, A.—MATSUNAGA, H.: Exponential stability and asymptotic periodic solutions of linear integral equations with two delays, J. Dynam. Differential Equations 35 (2023), no. 2, 1309–1335.
  25. KAYAL, N. C.—MONDAL, P.—SAMANTA, T. K.: On the stability of a pexiderized functional equation in intuitionistic fuzzy Banach spaces, App. Appl. Math. 10 (2015), no. (2), 783–794.
  26. KHAMSI, M. A.—KOZLOWSKI, W. M.: Fixed Point Theory in Modular Function Spaces. [With a foreword by W. A. Kirk.], Birkh¨auser, Springer, Cham, 2015.
  27. KOZLOWSKI, W. M.: Modular Function Spaces. Marcel Dekker, Inc., New York, 1988.
  28. MATAR, M. M.—SAMEI, M. E.—ETEMAD, S.— AMARA, A.— REZAPOUR, S.–ALZABUT, J.: Stability analysis and existence criteria with numerical illustrations to fractional Jerk differential system involving generalized caputo derivative, Qualitative Theory of Dynamical Systems, 23 (2024), no. 3, 1–36,
  29. MIRMOSTAFAEE, A. K.—MOSLEHIAN, M. S.: Stability of additive mappings in non-Archimedean fuzzy normed spaces, Fuzzy Sets and Systems, 160 (2009), no. 11, 1643–1652.
  30. MUSIELA, J.: Orlicz spaces and modular spaces, Lecture notes in Math. 1034 (1983), pp. 216.
  31. MUSIELAK, J.—ORLICZ, W.: On modular spaces, Studia Mathematica 18 (1950), no. 1, 49–65.
  32. NAKANO, H.: Modular Semi-ordered Spaces. Tokyo Mathematical Book Series, Maruzen Co. Ltd, Tokyo, Japan, 1950.
  33. NARASIMMAN, P.—BODAGHI, A.: Solution and stability of a mixed type functional equation, Filomat, 31 (2017), no. 5, 1229–1239.
  34. PACHAIYAPPAN, D.—RAMDOSS, M.—LEE, J. R.—MIN, S. W.: Multifarious functional equations in connection with three geometrical means, J. Comput. Anal. Appl. 32 (2024), no. 1.
  35. RASSIAS, J. M.—RAVI, K.—SENTHIL KUMAR, B. V.: Stabilities and instabilities of rational functional equations and Euler-Lagrange-Jensen (a, b)-sextic functional equations, Math. Anal. Appl. Selected Topics (2018), Wiley Online Library, 341–400.
  36. RASSIAS, J. M.—THANDAPANI, E.—RAVI, K.—SENTHIL KUMAR, B. V.: Functional equations and inequalities: solutions and stability results. Series on Concrete and Applicable Mathematics, Vol. 21. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.
  37. RASSIAS, T. M.: On the stability of the linear mapping in banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. (2), 297–300.
  38. SAHA, P.—MONDAL, P.—CHQUDHURY, B. S. : A fixed point approach to the hyersulam-rassias stability problem of pexiderized functional equation in modular spaces, Tatra Mt. Math. Publ. 78 (2021), no. 1, 59–72.
  39. SAHA, P.—SAMANTA, T. K.—MONDAL, P.—CHOUDHURY, B. S.: Stability of a two-variable pexiderized additive functional equation in intuitionistic fuzzy banach spaces: A fixed point approach, Tamsui Oxford Journal of Information & Mathematical Sciences (TOJIMS) 33 (2019), no. 1.
  40. P. SAHA, T. K. SAMANTA, P. MONDAL, AND B. S. CHOUDHURY: Stability of two variable pexiderized quadratic functional equation in intuitionistic fuzzy Banach spaces, Proyecciones (Antofagasta), 38 (2019), no. 3, 447–468.
  41. SAYYARI, Y.—DEHGHANIAN, M.—C. PARK, C.: System of bi-additive and bi-quadratic functional equations, The Journal of Analysi, (2024), 1–12.
  42. SENTHIL KUMAR, B. V.—AL-SHAQSI, K.—DUTTA, H.: Classical stabilities of multiplicative inverse difference and adjoint functional equations, Adv. Difference Equ. 2020 (2020), no. 1, Article no. 215.
  43. SENTHIL KUMAR, B. V.—AL-SHAQSI, K.—SABARINATHAN, S.: Dislocated quasi-metric stability of a multiplicative inverse functional equation, J. Math. Comput. Sci. 24 (2022), 140–146.
  44. TAMILVANAN, K.—ALKHALDI, A. H.—JAKHAR, J.—CHUGH, R.— JAKHAR, J.— RASSIAS, J. M.: Ulam stability results of functional equations in modular spaces and 2-Banach spaces,Mathematics, 11 (2023), no. 2, Article no. 371.
  45. TAMRAKAR, E.—PATHAK, H. K.: Fixed point results for multivalued contraction mappings in modular and non-Archimedean modular metric spaces,J. Anal. 32 (2024), no. 1, 103–123.
  46. ULAM, S. M.: Problems in Modern Mathematics, Courier Corporation, Dover Publications, Inc. Mineola New York, 2004.
  47. WONGKUM, K.—CHAIPUNYA, P.—KUMAM, P. ET AL: On the generalized Ulam-Hyers-Rassias stability of quadratic mappings in modular spaces without-conditions, J. Funct. Spaces Appl. 2015 (2015), no. 1, paper no. 461719.
  48. XU, T. Z.—RASSIAS, M. J.: A fixed point approach to the intuitionistic fuzzy stability of quintic and sextic functional equations, Iran. J. Fuzzy Syst. 9 (2012), no. 5, 21–40.
DOI: https://doi.org/10.2478/tmmp-2024-0016 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 47 - 64
Submitted on: Apr 15, 2023
Accepted on: Nov 11, 2023
Published on: Oct 20, 2024
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Parbati Saha, Nabin C. Kayal, Binayak S. Choudhury, Santu Dutta, Sankar Prasad Mondal, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.