Have a personal or library account? Click to login
Stability and Hopf Bifurcation in a Modified Sprott C System Cover

Stability and Hopf Bifurcation in a Modified Sprott C System

Open Access
|Jul 2024

References

  1. ÇELIK, C.: The stability and Hopf bifurcation for a predator–prey system with time delay, Chaos, Solitons and Fractals 37 (2008), 87–99.
  2. DONG, E.—YU, H.—TONG, J.—WANG, Z.: Divergence measure on a modified Sprott C system, IEEE Access 9 (2021), 88959–88969.
  3. GUCKENHEIMER, J.—HOLMES, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Vol. 42. Springer Science and Business Media, New York, 1st edition, 2013.
  4. HASSARD, B. D.—KAZARINOFF, N. D.—WAN, Y.-H.—WAN, Y. W.: Theory and Applications of Hopf Bifurcation. In: Lecture Notes Series Vol. 41. Cambridge University Press, Cambridge-New York, 1981.
  5. HAYNES, R. D.: Invariant Manifolds of Dynamical Systems: Theory and Computation. Master’s Thesis, Simon Fraser University (Canada), 1999.
  6. JIANG, B.—HAN, X.—BI, Q.: Hopf bifurcation analysis in the T system, Nonlinear Analysis: Real World Applications 11 (2010), 522–527.
  7. LYNCH, S.: Dynamical Systems With Applications Using MATLAB. Springer Science and Business Media, Boston Birkh¨auser, 2004.
  8. MIRKHAN, J. M.—AMEN, A. I.: Bifurcation analysis for Shil’nikov chaos electro-dissolution of Copper, Zanco Journal of Pure and Appl. Sci. 34 (2022), 83–91. http://dx.doi.org/10.21271/ZJPAS.34.4.9
  9. MOIOLA, J. L.—CHEN, G.: Hopf Bifurcation Analysis. A Frequency Domain Approach. World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, Vol 21. World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
  10. MOTA, M.C.—OLIVEIRA, R.D.D.S.: Dynamic aspects of Sprott BC chaotic system, Discrete Contin. Dyn. Syst.: Ser. B 26 (2021), no. 3, 1653–1673.
  11. PLAAT, O.: Ordinary Differential Equations. Holden-Day, Ine, United States of America, 1971.
  12. SARMAH, H. K.—DAS, M. C.—BAISHYA, T. K.: Hopf bifurcation in a chemical model, International Journal for Innovative Research in Science and Technology 1 (2015), no. 9, 23–33.
  13. SPROTT, J. C.: A new class of chaotic circuit, Physics Letters A 266 (2000), 19–23.
  14. SPROTT, J. C.: Some simple chaotic flows,Phys. Rev. E.(3) 50 (1994), no.2, part A, R 647–R 650.
  15. SPROTT, J.: Simplest dissipative chaotic flow, Physics Letters A 228 (1997), 271–274.
  16. WEI, Z.—YANG, Q.: Dynamical analysis of the generalized Sprott C system with only two stable equilibria, Nonlinear Dynamics 68 (2012), 543–554.
  17. WOUAPI, K.—FOTSIN, B. H.—FEUDJIO, K. F.—NJITACKE, T. Z.: Hopf bifurcation, offset boosting and remerging Feigenbaum trees in an autonomous chaotic system with exponential nonlinearity, SN Applied Sciences 1 (2019), 1–22.
  18. YU, Y.—ZHANG, S.: Hopf bifurcation in the Lüsystem, Chaos, Solitons and Fractals 17 (2003), 901–906. https://scholar.google.com/scholar?hl=sk&as_sdt=0%2C5&q=Hopf+bifurcation+in+the+L%7B%5C%22u%7D+system+2003&btnG=
  19. ZHOU, X.—WU, Y.—LI, Y.—WEI, Z.: Hopf bifurcation analysis of the Liu system, Chaos, Solitons and Fractals 36 (2008), 1385–1391. https://www.sciencedirect.com/science/article/pii/S0960077906008149
DOI: https://doi.org/10.2478/tmmp-2024-0012 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 59 - 72
Submitted on: Dec 28, 2022
Accepted on: Jun 13, 2024
Published on: Jul 19, 2024
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Rizgar H. Salih, Bashdar M. Mohammed, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.