Have a personal or library account? Click to login
An Application of φ-Metric and Related Best Proximity Point Results Generalizing Wardowski’s Fixed Point Theorem Cover

An Application of φ-Metric and Related Best Proximity Point Results Generalizing Wardowski’s Fixed Point Theorem

Open Access
|Jun 2024

References

  1. DAS. A.—KUNDU, A.—BAG, T.: A new approach to generalize metric functions,International Journal of Nonlinear Analysis and Applications 14 (2023), 279–298.
  2. WARDOWSKI, D.: Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 94 (2012), 6 pp.
  3. BASHA, S. S.: Extensions of Banach’s contraction principle, Numer. Funct. Anal. Optim. 31 (2010), no. 4–6, 569–576.
  4. BASHA, S. S.: Best proximity points: ptimal solutions, J. Optim. Theory Appl. 151 (2011), 210–216.
  5. ALTUN, I.—ASLANTAS, M.—SAHIN, H.: Best proximity point results for p-proximal contractions, Acta Math. Hungar. 162 (2020), 393–402.
  6. GABELEH, M.—MARKIN, J.: A note on the paper “Best proximity point results for p-proximal contractions”, Acta Math. Hungar. 164 (2021), 326–329.
  7. SOM, S.: A remark on the paper “A note on the paper Best proximity point results for p-proximal contractions”, Acta Math. Hungar. 166 (2022), 103–106.
  8. SOM, S.: Comments on the paper “Best proximity point results for p-proximal contractions”, Acta Math. Hungar. 168 (2022), 516–519.
  9. GABELEH, M.: Common best proximity pairs in strictly convex Banach spaces,Georgian Math. J. 24 (2017), 363–372.
  10. ASLANTAS, M.: Best proximity point results on strong b-metric spaces, Journal of New Theory 34 (2021), 28–36.
  11. RAJ, V. S.—VEERAMANI, RAJ.: Best proximity pair theorems for relatively non-expansive mappings, Appl. Gen. Topol. 10 (2009), 21–28.
  12. BASHA, S. S.: Best proximity points: Global optimal approximate solutions,J.Global Optim. 49 (2011), 15–21.
  13. GABELEH, M.: Convergence of Picard’s iteration using projection algorithm for noncyclic contractions,Indag. Math.(N.S.) 30 (2019), 227–239.
  14. GABELEH, M.—VETRO, C.: A new extension of Darbo’s fixed point theorem using relatively Meir–Keeler condensing operators, Bull. Aust. Math. Soc. 98 (2018), 286–297.
DOI: https://doi.org/10.2478/tmmp-2024-0011 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 123 - 134
Submitted on: Dec 8, 2023
Accepted on: May 11, 2024
Published on: Jun 18, 2024
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Abhishikta Das, Sumit Som, Hemanta Kalita, Tarapada Bag, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.