References
- ÁLVAREZ, J.—EYDENBERG, M.—MARIANI, M. C.: The Nemytsky operator on vector valued measures (preprint).
- ÁLVAREZ, J.—GUZMÁN-PARTIDA, M.: Nonlinear initial value problems with measure solutions, Electronic Journal of Mathematical Analysis and Applications, 5 (2017), no. 2, 69–88, http://math-frac.org/Journals/EJMAA/Vol5(2)_July_2017/Vol5(2)_Papers/09_EJMAA_Vol5(2)_July_2017_pp_68-88.pdf.
- ]ÁLVAREZ, J.—GUZMÁN-PARTIDA, M.: A study of vector measures Lecturas Mate-máticas, 44 (2023), no. 1, 5–61, http://scm.org.co/archivos/revista/Articulos/1361.pdf.
- AMBROSETTI, A.—PRODI, G.: A Primer of Nonlinear Analysis. Corrected reprint of the 1993 original. Cambridge Studies in Advanced Mathematics, Vol. 34, Cambridge University Press, Cambridge, 1995.
- APPELL, J.—ZABRĔIKO, P. P.: Nonlinear Superposition Operators. Cambridge University Press 1990, https://doi.org/10.1017/CBO9780511897450.
- APPELL, J.—ZABRĔIKO, P. P.: Nonlinear Superposition Operators, Cambridge Tracts in Mathematics, Vol. 95, Cambridge University Press, Cambridge, 1990.
- BERKOVIT, J.—FABRY, C.: An extension of the topological degree in Hilbert space, Abstract and Applied Analysis, 4 (2005), no. 2, 581–597.
- BERGOUNIOUX, M.—TRÖLTZSCH, F.: Optimal control of semilinear parabolic equations with state-constraints of bottleneck type, ESAIM: Control Optim. Calc. Var. 4 (1999), 595–608.
- BERKOVITS, J.—MAWHIN, J.: Diophantine approximation, Bessel functions and radially symmetric periodic solutions of semilinear wave equations in a ball, Trans.Amer. Math. Soc. 353 (2001), no. 12, 5041–5055.
- BROWN, R.: Book Review. Bull. Amer. Math. Soc. 41 (2004), no. 2, 267–271.
- CARATHÉODORY, C.: Vorlesungenüber reelle Funktionen. BG Teubner, Leipzig and Berlin, 1918.
- CASTILLO, R. E.—MERENTES, N.—TROUSSELOT, E.: The Nemytskii operator on bounded φ-variation in the mean spaces, Proyecciones J. of Math. 32 (2013), no. 2, 119–142, www.revistaproyecciones.cl/article/view/1121/1161
- CHABROWSKI, J.: Variational Methods for Potential Operator Equations. With applications to nonlinear elliptic equations. De Gruyter Studies in Mathematics, Vol. 24. Walter de Gruyter & Co., Berlin, 1997.
- CIARLET, P. G.: Mathematical elasticity. Volume I: Three-dimensional elasticity. Stud. Math. Appl. Vol. 20. Amsterdam etc.: North- Holland, 1988.
- DEPREE, J.—SWARTZ, C.: Introduction to Real Analysis. John Wiley & Sons, New York, 1988.
- DUDLEY, R. M.—NORVAIŠA, R.: Concrete Functional Calculus. Springer-Verlag, Berlin, 2013.
- FRÉCHET, M.: Sur quelques points du calcul fonctionnel, Rend. Circ. Matem. Palermo 22 (1906), no. 1, 1–72.
- GAINES, R. E.—MAWHIN, J.: Coincidence Degree and Nonlinear Differential Equations. Lecture Notes in Math. Vol. 568, Springer-Verlag, Berlin, 1977.
- GATICA, G. N.—HSIAO, G. C.: Boundary-Field Equation Methods for a Class of Nonlinear Problems. Pitman Research Notes in Mathematics Series, Vol. 331. Longman, Harlow, 1995.
- KRASNOSEL’SKĬI, M. A.: Topological Methods in the Theory of Nonlinear Integral Equations. (Translated by A. H. Armstrong; Translation edited by J. Burlak.) A Pergamon Press Book, The Macmillan Company, New York, 1964.
- KRASNOSEL’SKIĬ, M. A.—J. MAWHIN, J.: The index at infinity of some twice degenerate compact vector fields, Discrete Contin. Dynamical Systems 1 (1995), no. 2, 207–216.
- LUCCHETTI, R. E.—PADRONE, F.: On Nemytskii’s operator and its application to the lower continuity of integral functionals, Indiana Univ. Math. J. 29 (1980), no. 5, 703–713.
- MATKOWSKI, J.: On Nemytskii operator, Math. Japon, 33 (1988), no. 1, 81–86.
- MATKOWSKI, J.: Functional equations and Nemytskii operator, Funkcial Ekvac. 25 (1982), no. 2, 127–132,
- MAWHIN, J.: Topological Degree Methods in Nonlinear Boundary Value Problems, In: Expository lectures from the CBMS Regional Conference held at Harvey Mudd College, Claremont, Calif., June 9–15, 1977. CBMS Regional Conference Series in Mathematics, Vol. 40. Amer. Math. Soc., Providence, RI, 1979.
- MAWHIN, J.: Topological degree and boundary value problems for nonlinear differential equations. In: (M. Furi and P. Zecca, eds.), Topological Methods for Ordinary Differential Equations, Lect. Notes in Math. Vol. 1537, Springer-Verlag, Berlin, 1993, pp. 74–142.
- MOREIRA, D. R.—TEIXEIRA, E. V. O.: On the behavior of weak convergence under nonlinearity and applications, Proc. Amer. Math.Soc. 133 (2005), no. 6, 1647–1656, www.ams.org/proc/2005-133-06/S0002-9939-04-07876-1/S0002-9939-04-07876-1.pdf.
- NEMYTSKIĬ, V. V.: Théoremès d’éxistence et unicitédes solutionsdequelqueséquations intégrales non-linéaires, Mat. Sb. 41 (1934), 438–452.
- VĂINBERG, M. M.: On the differential and gradient of a functional, UspehiMat.Nauk 7 (1952), no. 3, 139–143.
- VĂINBERG, M. M.: Variational Methods for the Study of Nonlinear Operators,(Translated by A. Feinstein), Holden-Day Series in Mathematical Physics, San Francisco--London-Amsterdam: Holden-Day, Inc. x, 323 pp. (1964).