References
- BAO, H.—JIANG, D.: Existence and uniqueness of solutions to stochastic functional differential equations with infinite delay in Lp (Ω,Ch), Stoch. Dyn. 9 (2009), no. 4, 597–612. DOI:10.1142/s0219493709002786.
- FAIZULLAH, F.: Existence and uniqueness of solutions to SFDEs driven by G-Brownian motion with non-Lipschitz conditions, J. Comput. Anal. Appl. 23 (2017), no. 2, 344–354.
- FAIZULLAH, F.—REHMAN, M.U.—SHAHZAD, M.—CHOHAN, I.: On existence and comparison results for solutions to stochastic functional differential equations in the G-framework, J. Comput. Anal. Appl. 23 (2017), 693–702.
- KOLÁŘOVÁ, E.: Applications of second order stochastic integral equations to electrical networks, Tatra Mt. Math. Publ. 63 (2015), 163–173.
- KOLÁŘOVÁ, E.—BRANĆIK, L.: Stochastic Differential Equations Describing Systems with Coloured Noise, Tatra Mt. Math. Publ. 71 (2018), 107–99.
- PENG, S.: Nonlinear Expectations and Stochastic Calculus under Uncertainty, Probability Theory and Stochastic Modelling, Springer-Verlag, Berlin, Heidelberg, 2019. DOI: 10.1007/978-3-662-59903-7
- PENG, S.: Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations, Sci. China Ser. A-Math. 52 (2009), 1391–1411.
- PENG, S.: Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stochastic Process. Appl. 118 (2008), no. 12, 2223–2253.
- PENG, S.: G-expectation, G-Brownian motion and related stochastic calculus of Itô’s type. In: (Benth et al., eds.) Stochastic Analysis and Applications: The Abel Symposium 2005. Springer-Verlag, Berlin, Heidelberg, 2007, pp. 541–567.
- REN, Y.—BI, Q—SAKTHIVEL, R.: Stochastic functional differential equations with infinite delay driven by G-Brownian motion, Math. Methods Appl. Sci. 36 (2013), no. 13, 1746–1759.
- REN, Y.—XIA, N.: Existence, uniqueness and stability of the solutions to neutral stochastic functional differential equations with infinite delay, Appl. Math. Comput. 210 (2009), no. 1, 72–79.
- REN, Y.—LU, S.—XIA, N.: Remarks on the existence and uniqueness of the solution to stochastic functional differential equations with infinite delay, J. Comput. Appl. Math. 220 (2008), no. 1, 364–372.
- WANG, Y.—WU, F.—MAO, X.—ZHU, E.: Advances in the LaSalle-type theorems for stochastic functional differential equations with infinite delay, Discrete Contin. Dyn. Syst. Ser. B 25 (2020), no. 1, 287–300.
- WEI, F.—WANG, K.: The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay, J. Math. Anal. Appl. 331 (2007), no. 1, 516–531.
- WU, F.—YIN, G.—MEI, H.: Stochastic functional differential equations with infinite delay, J. Differential Equations 262 (2017), no. 3, 1226–1252.