Have a personal or library account? Click to login
Variational Mcshane and Pettis Integrals of Multifunctions Cover

Variational Mcshane and Pettis Integrals of Multifunctions

Open Access
|Apr 2024

References

  1. BONGIORNO, B.—DI PIAZZA L.—MUSIA L, K.: A variational Henstock integral characterization of the Radon-Nikodym property, Illinois J. Math. 53 (2009), no. 1, 87–99.
  2. BOURGIN, R.: Geometric Aspects of Convex Sets with the Radon-Nikodym Property. Lect. Notes in Math. Vol. 993 Springer-Verlag, Berlin, 1983.
  3. CANDELORO, D.—DI PIAZZA, L.—MUSIA L, K.—SAMBUCINI, A. R.: Gauge integrals and selections of weakly compact valued multifunctions, J. Math. Anal. Appl. 441 (2016), no. 1, 293–308.
  4. CASTAING, C.—VALADIER, M.: Convex Analysis and Measurable Multifunctions. Lect. Notes in Math. Vol. 580, Springer-Verlag, Berlin, 1977.
  5. CASCALES, B.—RODŔIGUEZ, J.: Birkhoff integral for multi-valued functions, J.Math. Anal. Appl. 297 (2004), no. 2, 540–560.
  6. CASCALES, B.—KADETS, V.—RODŔIGUEZ, J.: Measurable selectors and set-valued Pettis integral in non-separable Banach spaces, J. Funct. Anal. 256 (2009), no. 3, 673–699.
  7. DIESTEL, J.—UHL, J.: Vector Measures. Math. Surv. Vol. 15, Amer. Math. Soc. Providence, RI, 1977.
  8. DI PIAZZA, L.: Variational measures in the theory of the integration inm, Czechoslovak Math. J. 51 (2001), no. 1, 95–110.
  9. EL AMRI, K.—HESS, C.: On the Pettis integral of closed valued multifunctions, Set-Valued Anal. 8 (2000), no. 4, 329–360.
  10. GODET-THOBIE, C.: Some results about multimeasures and their selectors, Measure Theory at Oberwohlfach, 1979 ((Proc. Conf., Oberwolfach, 1979)), (Kölzow, ed.), Lecture Notes in Math. Vol. 794, Springer-Verlag, Berlin, 1980, pp. 112–116.
  11. HIAI, F.: Radon-Nikodym theorems for set-valued measures, J. Multivariate Anal. 1 (1978), no. 8, 96–118.
  12. HU, S.—PAPAGEORGIOU, N. S.: Handbook of Multivalued Analysis Vol. I: Theory. Mathematics and its Applications Vol. 419, Kluwer Academic Publishers, Dordrecht, 1997.
  13. KANDILAKIS, D. A.: On the extension of multimeasures and integration with respect to a multimeasure, Proc. Am. Math. Soc. 116, no. 1, (1992), 85–92.
  14. KALIAJ, S. B.: Some remarks on descriptive characterizations of the strong McShane integral, Mathematica Bohemica Vol. 144, (2019), no. 4, 339–355.
  15. KALIAJ, S. B.: Descriptive characterizations of Pettis and strongly McShane integrals, Real Anal. Exchange 39 (2013–2014), no. 1, 227–238.
  16. KELLEY, J. L.: General Topology, D. Van Nostrand Co., Inc., Toronto-New York-London, (1955).
  17. KNIGHT, W. J.: Absolute continuity of some vector functions and measures, Canadian J. Math. 24 (1972), 737–746.
  18. MARRAFFA, V.: The variational McShane integral in locally convex spaces, The Rocky Mountain Journal of Mathematics 39 (2009), no. (6), 1993–2013.
  19. MUSIA L, K.: Topics in the theory of Pettis integration, Rend. Istit. Mat. Univ. Trieste 23 (1991), 177-262.
  20. MUSIA L, K.: Pettis integrability of multifunctions with values in arbitrary Banach spaces, J. Convex Analysis 18 (2011), 769–810.
  21. MUSIA L, K.: Approximation of Pettis integrable multifunctions with values in arbitrary Banach spaces, J.Convex Analysis 20 (2013), no. 3, 833–870.
  22. ROBERTSON, A. P.—ROBERTSON, W.: Topological Vector Spaces. Cambridge Tracts in Mathematics and Mathematical Physics, Vol. 53, Cambridge University Press, New York, 1964.
  23. SCHAEFER, H. H.—WOLFF, W. P.: Topological Vector Spaces. Second edition. Graduate Texts in Mathematics Vol. 3. Springer-Verlag, New York, 1999.
  24. SCHWABIK,Š.—GUOJU, Y.: Topics in Banach Space Integration, Series in Real Analysis Vol. 10, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
  25. TALAGRAND, M.: Pettis Integral and Measure Theory, Mem.Amer. Math.Soc. 51 no. 307, (1984).
  26. THOMSON, B. S.: Differentiation. In: Handbook of Measure Theory, (E. Pap, ed.) Elsevier Science B. V., (2002) 179–247.
  27. YEONG, L. T.: Henstock-Kurzweil Integration on Euclidean Spaces. Series in Real Analysis, Vol. 12, World Scientific, Hackensack, NJ, (2011).
  28. YEONG, L. T.: Some full characterizations of the strong McShane integral, Math. Bohemica 129 (2004), 305–312.
DOI: https://doi.org/10.2478/tmmp-2024-0004 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 31 - 46
Submitted on: Jun 17, 2023
Accepted on: Dec 20, 2023
Published on: Apr 13, 2024
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Sokol Bush Kaliaj, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.