Have a personal or library account? Click to login
Existence and Stability Results for Time-Dependent Impulsive Neutral Stochastic Partial Integrodifferential Equations with Rosenblatt Process and Poisson Jumps Cover

Existence and Stability Results for Time-Dependent Impulsive Neutral Stochastic Partial Integrodifferential Equations with Rosenblatt Process and Poisson Jumps

Open Access
|Mar 2024

References

  1. ANGURAJ, A.—VINODKUMAR, A.: Existence, uniqueness and stability results of impulsive stochastic semilinear neutral functional differential equations with infinite delays, Electronic Journal of Qualitive Theory of Differential Equations, 67 (2009), 1–13.
  2. LIN, A—REN, Y.—XIA, N.: On neutral impulsive stochastic integrodifferential equations with infinite delays via fractional operators, Math. Comput. Modelling 51 (2010), 413–424.
  3. CARABALLO, T.—GARRIDO-ATIENZA, T. M. J.—TANIGUCHI, T.: The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal. 74 (2011), 3671–3684.
  4. DIEYE, M.—DIOP, M. A.—EZZINBI, K.: On exponential stability of mild solutions for some stochastic partial integrodifferential equations. Statist. Probab. Lett. 123 (2017), 61–76
  5. GRIMMER, R. C.: Resolvent operators for integral equations in a Banach space,Trans. Amer. Math. Soc. 273 (1982), 333–349.
  6. ANGURAJ, A.—RAVIKUMAR, K.: Existence and stability results for impulsive stochastic functional integrodifferential equations with Poisson jumps, Journal of Applied Nonlinear Dynamics, 8 (2019), no. 3, 407–417.
  7. BENCHOHRA, M.—OUAHAB, A.: Impulsive neutral functional differential equations with variable times, Nonlinear Anal. 55 (2003), no. 6, 679–693.
  8. BIAGINI, F.—HU, Y.—OKSENDAL, B.—ZHANG, T.: Stochastic Calculus for Fractional Brownian Motion and Application. Springer-Verlag, Berlin, 2008.
  9. BOUFOUSSI, B.—HAJJI, S.: Neutral stochastic functional differential equation ‘driven by a fractional Brownian motion in a Hilbert space, Statist. Probab. Lett. 82 (2012), 1549–1558.
  10. BOUFOUSSI, B.—HAJJI, S.: Functional differential equations in Hilbert space driven by a fractional Brownian motion,Afr. Mat. 23 (2011), no. 2, 173–194.
  11. BOUFOUSSI, B.—HAJJI, S.—LAKHEL, E.: Time-dependent neutral stochastic functional differential equations driven by a fractional Brownian motion, Communications on Stochastic Analysis 10 (2016), no. 1, DOI: 10.31390/cosa.10.1.01.
  12. BOUFOUSSI, B.—HAJJI, S.: Successive approximation of neutral functional stochastic differential equations with jumps,Sat.Proba. Lett. 80 (2010), 324–332.
  13. CARABALLO, T.—DIOP, M. A.—NDIAYE, A. A.: Asymptotic behaviour of neutral stochastic partial functional integrodifferential equations driven by a fraction Brownian motion, J. Nonlinear Sci. Appl. 7 (2014), 407–421.
  14. FEYEL, D.—DE LA PRADELLE, A.: On fractional Brownian processes, Potential Anal. 10 (1999), 273–288.
  15. LAKHEL, E.—HAJJI, S.: Existence and uniqueness of mild solutions to neutral stochastic functional differential equations driven by a fractional Brownian motion with non-Lipschitz coefficients, J. Number. Math. Stoch, 7 (2015), no. 1. 14–29.
  16. LAKSHMIKANTHAM, V.—BAINOV, D. D.—SIMEONOV, P. S.: Theory of Impulsive Differential Equations. In: Series in Modern Applied Mathematics Vol. 6, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989.
  17. REN, Y.—CHENG, X.—SAKTHIVEL, R.: Impulsive neutral stochastic functional integrodifferential equations with infinite delay driven by fractional Brownian motion, Appl. Math. Comput 247 (2014), 205–212.
  18. XU, D.—YANG, Z.: Exponential stability of nonlinear impulsive neutral differential equations with delays, Nonlinear Anal, 67 (2006), no. 5, 1426–1439.
  19. DOBRUSHIN, R.L.— MAJOR, P.: Non-central limit theorems for non-linear functionals of Gaussian fields, Z. Wahrscheinlichkeitstheorie Verw. Geb. 50 (1979), 27–52.
  20. LUO, J.—TANIGUCHI, T.: The existence and uniqueness for non-lipschitz stochastic neutral delay evolution equations driven by Poisson jumps,Stoch.Dyn, 9 (2009), no. 1, 135–152.
  21. MANDELBROT, B.—NESS, V.: Fractional Brownian motion, fraction noises and applications,SIAM Reviews, 10 (1968), no. 4, 422–437.
  22. TAM, J. Q.—WANG, H. L.—GUO, Y. F.: Existence and uniqueness of solution to neutral stochastic functional differential equations with Poisson jumps, Abstr. Appl. Anal. (2012), 1-20 pp.
  23. CONT, R.—TANKOV, P.: Financial Modeling with jump processes. Financial Mathematics series, Chapman and Hall/CRC, Boca Raton, 2004.
  24. CUI, J.—YAN, T.: Successive approximation of neutral stochastic evolution equations with infinite delay and Poisson jumps, Appl. Math. Comp. 128 (2012), 6776–6784.
  25. HALE, J. K.—MEYER, K. R.: A class of functional equations of neutral type,Memoirs of the Amer. Math. Soc. 76 (1967), 1–65.
  26. HALE, J. K.—VERDUYN LUNEL, S. M.: Introduction to Functional Differential Equations. Springer-Verlag, New York, 1993.
  27. KOLMANOVSKII, V. B.—NOSOV, V. B.: Stability of neutral-type functional-differential equations, Nonlinear Anal. 6 (1982), 873–910.
  28. LAKHEL, EL H.—HAJJI, S.: Neutral stochastic functional differential equations driven by a fractional Brownian motion and Poisson point processes, Gulf Journal of Mathematics, 4 (2016), no. 3, 1–14, https://doi.org/10.56947/gjom.v4i3.69
  29. TINDEL, S.—TUDOR, C. A.—VIENS, F.: Stochastic evolution equations with fractional Brownian motion, Probab Theory Related Fields 127 (2003), no. 2, 186–204.
  30. NUALART, D.: The Malliavin Calculus and Related Topics. 2nd ed. In: Probab. Appl. (NY). Springer, New York, 2006.
  31. KINGMAN, J. C. F.: Poisson Processes and Poisson Random Measure. Oxford Univ. Press, Oxford, 1993.
  32. LUO, J.—LIU, K.: Stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps, Stochastic Process. Appl. 118 (2014), 864–895.
  33. TAQQU, M.: Weak convergence to the fractional Brownian motion and to the Rosenblatt process, Advances in Applied Probabilitz 7 (1975), no. 2, 249–249, DOI:10.2307/1426060.
  34. TINDEL,S.—TUDOR, CA. —VIENS, F.: Stochastic evolution equations with fractional Brownian motion, Probab. Theory Related Fields, 127 (2003), 186–204.
  35. LEONENKO, N.—AHN, V.: Rate of convergence to the Rosenblatt distribution for additive functionals of stochastic processes with long-range dependence, Journal of Appl. Math. and Stochastic Anal. 14 (2001), 27–46.
  36. ABRY, P.—PIPIRAS, V.: Wavelet-based synthesis of the Rosenblatt process, Signal Processing 86 (2006), 2326–2339.
  37. byTudor, C. A. Analysis of the Rosenblatt process, ESAIM Probab. Stat. 12 (2008), 230–257.
  38. MAEJIMA, M.—TUDOR, CA: Wiener integrals with respect to the Hermite process and a non central limit theorem, Stoch. Anal. Appl. 25 (2007), 1043–1056.
  39. MAEJIMA, M.—TUDOR, CA: Selfsimilar processes with stationary increments in the second Wiener chaos, Probab. Math. Statist. 32 (2012), 167–186.
  40. MAEJIMA M.—TUDOR, CA: . On the distribution of the Rosenblatt process, Statist. Probab. Lett. 83 (2013) 1490–1495.
  41. PIPIRAS, V.— TAQQU, MS.: Regularization and integral representations of Hermite processes. Statist. Probab. Lett. 80 (2010), 2014–2023.
  42. KRUK, I.—RUSSO, F.—TUDOR, C. A.: Wiener integrals, Malliavin calculus and covariance measure structure, J. Funct. Anal. 249 (2007), 92–142.
  43. CHALISHAJAR, DIMPLEKUMAR N.: Controllability of second order impulsive neutral functional differential inclusions with infinite delay, J. Optim. Theory Appl. 154 (2012), 672–684. DOI: 10.1007/s10957-012-0025-6.
DOI: https://doi.org/10.2478/tmmp-2024-0002 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 1 - 24
Submitted on: Sep 22, 2022
Accepted on: Dec 3, 2023
Published on: Mar 12, 2024
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2024 Dimplekumar Chalishajar, Ramkumar Kasinathan, Ravikumar Kasinathan, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.