References
- ANGURAJ, A.—VINODKUMAR, A.: Existence, uniqueness and stability results of impulsive stochastic semilinear neutral functional differential equations with infinite delays, Electronic Journal of Qualitive Theory of Differential Equations, 67 (2009), 1–13.
- LIN, A—REN, Y.—XIA, N.: On neutral impulsive stochastic integrodifferential equations with infinite delays via fractional operators, Math. Comput. Modelling 51 (2010), 413–424.
- CARABALLO, T.—GARRIDO-ATIENZA, T. M. J.—TANIGUCHI, T.: The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal. 74 (2011), 3671–3684.
- DIEYE, M.—DIOP, M. A.—EZZINBI, K.: On exponential stability of mild solutions for some stochastic partial integrodifferential equations. Statist. Probab. Lett. 123 (2017), 61–76
- GRIMMER, R. C.: Resolvent operators for integral equations in a Banach space,Trans. Amer. Math. Soc. 273 (1982), 333–349.
- ANGURAJ, A.—RAVIKUMAR, K.: Existence and stability results for impulsive stochastic functional integrodifferential equations with Poisson jumps, Journal of Applied Nonlinear Dynamics, 8 (2019), no. 3, 407–417.
- BENCHOHRA, M.—OUAHAB, A.: Impulsive neutral functional differential equations with variable times, Nonlinear Anal. 55 (2003), no. 6, 679–693.
- BIAGINI, F.—HU, Y.—OKSENDAL, B.—ZHANG, T.: Stochastic Calculus for Fractional Brownian Motion and Application. Springer-Verlag, Berlin, 2008.
- BOUFOUSSI, B.—HAJJI, S.: Neutral stochastic functional differential equation ‘driven by a fractional Brownian motion in a Hilbert space, Statist. Probab. Lett. 82 (2012), 1549–1558.
- BOUFOUSSI, B.—HAJJI, S.: Functional differential equations in Hilbert space driven by a fractional Brownian motion,Afr. Mat. 23 (2011), no. 2, 173–194.
- BOUFOUSSI, B.—HAJJI, S.—LAKHEL, E.: Time-dependent neutral stochastic functional differential equations driven by a fractional Brownian motion, Communications on Stochastic Analysis 10 (2016), no. 1, DOI: 10.31390/cosa.10.1.01.
- BOUFOUSSI, B.—HAJJI, S.: Successive approximation of neutral functional stochastic differential equations with jumps,Sat.Proba. Lett. 80 (2010), 324–332.
- CARABALLO, T.—DIOP, M. A.—NDIAYE, A. A.: Asymptotic behaviour of neutral stochastic partial functional integrodifferential equations driven by a fraction Brownian motion, J. Nonlinear Sci. Appl. 7 (2014), 407–421.
- FEYEL, D.—DE LA PRADELLE, A.: On fractional Brownian processes, Potential Anal. 10 (1999), 273–288.
- LAKHEL, E.—HAJJI, S.: Existence and uniqueness of mild solutions to neutral stochastic functional differential equations driven by a fractional Brownian motion with non-Lipschitz coefficients, J. Number. Math. Stoch, 7 (2015), no. 1. 14–29.
- LAKSHMIKANTHAM, V.—BAINOV, D. D.—SIMEONOV, P. S.: Theory of Impulsive Differential Equations. In: Series in Modern Applied Mathematics Vol. 6, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989.
- REN, Y.—CHENG, X.—SAKTHIVEL, R.: Impulsive neutral stochastic functional integrodifferential equations with infinite delay driven by fractional Brownian motion, Appl. Math. Comput 247 (2014), 205–212.
- XU, D.—YANG, Z.: Exponential stability of nonlinear impulsive neutral differential equations with delays, Nonlinear Anal, 67 (2006), no. 5, 1426–1439.
- DOBRUSHIN, R.L.— MAJOR, P.: Non-central limit theorems for non-linear functionals of Gaussian fields, Z. Wahrscheinlichkeitstheorie Verw. Geb. 50 (1979), 27–52.
- LUO, J.—TANIGUCHI, T.: The existence and uniqueness for non-lipschitz stochastic neutral delay evolution equations driven by Poisson jumps,Stoch.Dyn, 9 (2009), no. 1, 135–152.
- MANDELBROT, B.—NESS, V.: Fractional Brownian motion, fraction noises and applications,SIAM Reviews, 10 (1968), no. 4, 422–437.
- TAM, J. Q.—WANG, H. L.—GUO, Y. F.: Existence and uniqueness of solution to neutral stochastic functional differential equations with Poisson jumps, Abstr. Appl. Anal. (2012), 1-20 pp.
- CONT, R.—TANKOV, P.: Financial Modeling with jump processes. Financial Mathematics series, Chapman and Hall/CRC, Boca Raton, 2004.
- CUI, J.—YAN, T.: Successive approximation of neutral stochastic evolution equations with infinite delay and Poisson jumps, Appl. Math. Comp. 128 (2012), 6776–6784.
- HALE, J. K.—MEYER, K. R.: A class of functional equations of neutral type,Memoirs of the Amer. Math. Soc. 76 (1967), 1–65.
- HALE, J. K.—VERDUYN LUNEL, S. M.: Introduction to Functional Differential Equations. Springer-Verlag, New York, 1993.
- KOLMANOVSKII, V. B.—NOSOV, V. B.: Stability of neutral-type functional-differential equations, Nonlinear Anal. 6 (1982), 873–910.
- LAKHEL, EL H.—HAJJI, S.: Neutral stochastic functional differential equations driven by a fractional Brownian motion and Poisson point processes, Gulf Journal of Mathematics, 4 (2016), no. 3, 1–14, https://doi.org/10.56947/gjom.v4i3.69
- TINDEL, S.—TUDOR, C. A.—VIENS, F.: Stochastic evolution equations with fractional Brownian motion, Probab Theory Related Fields 127 (2003), no. 2, 186–204.
- NUALART, D.: The Malliavin Calculus and Related Topics. 2nd ed. In: Probab. Appl. (NY). Springer, New York, 2006.
- KINGMAN, J. C. F.: Poisson Processes and Poisson Random Measure. Oxford Univ. Press, Oxford, 1993.
- LUO, J.—LIU, K.: Stability of infinite dimensional stochastic evolution equations with memory and Markovian jumps, Stochastic Process. Appl. 118 (2014), 864–895.
- TAQQU, M.: Weak convergence to the fractional Brownian motion and to the Rosenblatt process, Advances in Applied Probabilitz 7 (1975), no. 2, 249–249, DOI:10.2307/1426060.
- TINDEL,S.—TUDOR, CA. —VIENS, F.: Stochastic evolution equations with fractional Brownian motion, Probab. Theory Related Fields, 127 (2003), 186–204.
- LEONENKO, N.—AHN, V.: Rate of convergence to the Rosenblatt distribution for additive functionals of stochastic processes with long-range dependence, Journal of Appl. Math. and Stochastic Anal. 14 (2001), 27–46.
- ABRY, P.—PIPIRAS, V.: Wavelet-based synthesis of the Rosenblatt process, Signal Processing 86 (2006), 2326–2339.
- byTudor, C. A. Analysis of the Rosenblatt process, ESAIM Probab. Stat. 12 (2008), 230–257.
- MAEJIMA, M.—TUDOR, CA: Wiener integrals with respect to the Hermite process and a non central limit theorem, Stoch. Anal. Appl. 25 (2007), 1043–1056.
- MAEJIMA, M.—TUDOR, CA: Selfsimilar processes with stationary increments in the second Wiener chaos, Probab. Math. Statist. 32 (2012), 167–186.
- MAEJIMA M.—TUDOR, CA: . On the distribution of the Rosenblatt process, Statist. Probab. Lett. 83 (2013) 1490–1495.
- PIPIRAS, V.— TAQQU, MS.: Regularization and integral representations of Hermite processes. Statist. Probab. Lett. 80 (2010), 2014–2023.
- KRUK, I.—RUSSO, F.—TUDOR, C. A.: Wiener integrals, Malliavin calculus and covariance measure structure, J. Funct. Anal. 249 (2007), 92–142.
- CHALISHAJAR, DIMPLEKUMAR N.: Controllability of second order impulsive neutral functional differential inclusions with infinite delay, J. Optim. Theory Appl. 154 (2012), 672–684. DOI: 10.1007/s10957-012-0025-6.