References
- CSÁSZÁR,Á.: Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), 351–357.
- AL-ODHARI, A.: On infra-topological spaces, Int.J.of Math. Archive. 6 (2015), 179-184.
- DIKRANJAN, D.—THOLEN, W.: Categorical Structure of Closure Operators: with Applications to Topology, Algebra and Discrete Mathematics and its Apppications 346, Springer Science & Business Media, algebra and discrete mathematics. Mathematics and its Applications, 346. Kluwer Academic Publishers Group, Dordrecht, 1995. xviii+358 pp. 2013.
- DRIES, L.: Tame topology and o-minimal structures. Cambridge university press, Van den Dries, Lou. Tame topology and o-minimal structures Vol. 248. Cambridge University press, 1998.
- CSÁSZÁR,Á.: Weak structures, Acta Math. Hungar. 131 (2011), 193–195.
- AVILA, J.—MOLINA, F. : Generalized weak structures, Int. Math. Forum 7 (2012), 2589–2595.
- ALTAWALLBEH, Z.: More on almost countably compact spaces, Ital. J. Pure Appl. Math. 43 (2020), 177–184.
- SCARBOROUGH, C.—STONE, A.: Products of nearly compact spaces, Trans. Amer. Math. Soc. 124, (1966) 131–147.
- ALTAWALLBEH, Z.—AL-MOMANY, A.: Nearly countably compact spaces, Int. Electron. J. Pure Appl. Math. 8 (2014), 59–65.
- ALTAWALLBEH, Z.—BADARNEH, A.—JAWARNEH, I.—AZ-ZO’BI, E.: Weakly and nearly countably compactness in generalized topology Axioms 12 (2023), no. 2, 122.
- ALTAWALLBEH, Z.—JAWARNEH, I.: μ-countably compactness and μℋ-countably compactness, Commun. Korean Math. Soc. 37 (2022), 269–277.
- VAUGHAN, J.: Countably compact and sequentially compact spaces, In: Handbook of Set-theoretic Topology (1984), pp. 569–602.
- JAMES, R.: Weakly compact sets,Trans.Amer. Math.Soc. 113 (1964), 129–140.
- CSÁSZÁR,Á.: Modification of generalized topologies via hereditary classes,Acta Math. Hungar. 115 (2007), 29–36.
- ABUAGE, M.—KILIÇMAN, A.: Some properties and mappings on weakly v-Lindelöf generalized topological spaces, J. Nonlinear Sci. Appl.(JNSA), 10 (2017), no. 8, 4150–4161.
- QAHIS, A.—ALJARRAH: μ-Lindelöfness in terms of a hereditary class, Missouri J. Math. Sci. 28 (2016), 15–24.
- SARSAK, M.: Weakly μ-compact spaces, Demonstratio Math. 45 (2012), 929–938.
- ABUAGE, M.—KILIÇMAN, A.: Functions and wv-Lindelöf with respect to a hereditary class, Cogent Math. Stat. 5(2018), no. 1, Art. ID 1479218, 10 pp.
- CARPINTERO, C.—ROSAS, E.—SALAS-BROWN, M.—SANABRIA, J.: μ-compactness with respect to a hereditary class, Bol. Soc. Parana. Mat. (3) 34 (2011), no. 2, 231–236.
- MIN, W.—KIM, Y.: Some strong forms of (g, g’)-continuity on generalized topological spaces, Honam Math. J. 33 (2011), no. 1, 85–91.
- MIN, W.: (δ, δ′)-continuity on generalized topological spaces, Acta Math. Hungar. 129 (2010), 350–356.
- MIN, W.: Almost continuity on generalized topological spaces, Acta Math. Hungar. 125 (2009) no. 1–2, 121–125.
- CAMMAROTO, F.—SANTORO, G.: Some counterexamples and properties on generalizations of Lindelöf spaces, Int.J.Math. Math.Sci. 19 (1996), 737–746.
- ABUAGE, M.—KILIÇMAN, A.—SARSAK, M.: nv-Lindelöfness,Malays. J. Math. Sci. 11 (2017), 73–86.
- MOLODTSOV, D.: Soft set theory—first results. Global optimization, control, and games, III. Comput. Math. Appl. 37 (1999), no. 4–5, 19–31.
- MAJI, P.—BISWAS, R.—ROY, A.: Soft set theory, Comput. Math. Appl. 45 (2003), no. 4–5, 555–562.
- ALI, M.—FENG, F.—LIU, X.—MIN, W.—SHABIR, M.: On some new operations in soft set theory, Comput. Math. Appl. 57 (2009), 1547–1553.
- FENG, F.—LI, C.—DAVVAZ, B.—ALI, M.: Soft sets combined with fuzzy sets and rough sets: a tentative approach, Soft Comput. 14 (2010), 899–911.
- THOMAS, J.—JOHNA, S.: On soft generalized topological spaces, J. New Results in Sci. 3 (2014), 1–15.