References
- AGARWAL, R. P.—BOHNER, M.—LI, T.—ZHANG, C.: Oscillation of second-order differential equations with a sublinear neutral term, Carpathian J.Math. 30 (2014), 1-6.
- AGARWAL, R. P.—GRACE S. R.—O’REGAN, D.: Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations, Kluwer, Dordrecht, 2002.
- AGARWAL, R. P.—GRACE S.R.—O’REGAN, D.: Oscillation Theory for Second Order Dynamic Equations. In: Ser. Math. Anal. Appl. Vol. 5, Taylor & Francis, London, 2003.
- BOHNER, M.—GRACE, S. R.—JADLOVSKÀ, I.: Oscillation criteria for second-order neutral delay differential equations, Electron. J. Qual. Theory Differ. Equ. 2017 (2017), no. 60, 1–12.
- GRACE, S. R.: Oscillatory behavior of second-order nonlinear differential equations with a nonpositive neutral term, Mediterr. J. Math. 14 (2017), no. 6, Paper no. 229, 12 pp.
- GRACE, S. R.—AGARWAL, R. P.—AKTAS, M. F.: On the oscillation of third order functional differential equations, Indian J. Pure Appl. Math. 39 (2008), 491–507.
- GRACE, S. R.—AGARWAL, R. P.—BOHNER, M.—O’REGAN, D.: Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), no. 8, 3463–3471.
- GRACE, S.R.—AGARWAL, R. P.—KAYMAKALAN, B.—SAE-JIE, W.: Oscillation theorems for second-order nonlinear dynamic equations, J. Appl. Math. Comput. 32 (2010), no. 1, 205–218.
- GRACE, S. R.—AGARWAL, R. P.—O’REGAN, D.: A selection of oscillation criteria for second-order differential inclusions, Appl.Math Lett. 22 (2009), no. 2, 153–158.
- GRACE, S. R.—BOHNER, M.—AGARWAL, R. P.: On the oscillation of second-order half-linear dynamic equations, J. Difference Eqn. Appl. 15 (2009), no. 5, 451–460.
- GRACE, S. R.—GRAEF, J. R.: Oscillatory behavior of second order nonlinear differential equations with a sublinear neutral term, Math. Model. Anal. 23 (2018), no. 2, 217–226.
- GRACE, S. R.—GRAEF, J. R.—JADLOVSKÁ, I.: Oscillatory behavior of second order nonlinear differential equations with positive and negative neutral terms, Differ. Equ. Appl. 12 (2020), no. 2, 201–211.
- GRACE, S. R.—GRAEF, J. R.—JADLOVSKÁ, I.: Oscillation criteria for second-order half-linear delay differential equations with mixed neutral terms, Math. Slovaca 69 (2019), no. 5, 1117–1126.
- GRACE, S. R.—GRAEF, J. R.—LI, T.—TUNÇ, E.: Oscillatory behaviour of second-order nonlinear differential equations with mixed neutral terms, Tatra Mt. Math. Publ. 79 (2021), 119–134.
- HALE, J. K.: Functional Differential Equations. In: Applied Mathematical Sciences, Vol. 3, Springer-Verlag, New York, 1971.
- HARDY, G. H.—LITTLEWOOD, J. E.—POLYA, G.: Inequalities. Cambridge University Press, Cambridge, 1959.
- KOPLATADZE, G.—CANTURIJA, T. A.: On the oscillatory and monotone solutions of the first-order differential equations with deviating arguments, Differ.Uravn. 18 (1982), 1465–1472.
- LADAS, G.—STAVROULAKIS, I. P.: Oscillation caused by several retarded and advanced arguments, J.Differential Equations 44 (1982), 134–152.
- LI, T.—ROGOVCHENKO, Y. V.: Oscillation of second-order neutral differential equations, Math. Nachr. 288 (2015), 1150–1162.
- LI, T.—ROGOVCHENKO, Y.—ZHANG, C.: Oscillation results for second-order nonlinear neutral differential equations, Adv. Difference Equ. 2013 (2013), Article ID: 336, 13 pp.
- PHILOS, CH. G.: On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays, Arch. Math. (Basel) 36 (1981), no. 2, 168–178.
- QIN, H.— SHANG, N.—LU, Y.: A note on oscillation criteria of second order nonlinear neutral delay differential equations, Comput. Math. Appl. 56 (2008), no. 12, 2987–2992.
- TAMILVANAN, S.—THANDAPANI, E.— DŽURINA, J.: Oscillation of second order nonlinear differential equation with sublinear neutral term, Differ. Equ. Appl. 9 (2017), 29–35.
- WONG, J. S. W.: Necessary and sufficient conditions for oscillation of second order neutral differential equations, J. Math. Anal. Appl. 252 (2000), no. 1, 342–352.
- WU, H.—ERBE, L.—PETERSON, A.: Oscillation of solution to second order half-linear delay dynamic equations on time scales, Electron. J. Differential Equations 2016 (2016), no. 71, 15 pp.
- XU, R.—MENG, F.: Some new oscillation criteria for second order quasilinear neutral delay differential equations, Appl. Math. Comput. 182 (2006), no. 1, 797–803.