References
- BUCK, R. C.: The measure theoretic approach to density,Amer. J. Math. 68 (1946), 560–580.
- BUCK, R. C.: Generalized asymptotic density,Amer. J. Math. 75 1953, 335–346.
- BUCK, R. C.: Convergence theorems for finitely additive integrals, J.Indian Math.Soc. (N.S.) 23 (1959), 1–9.
- DRMOTA, M.—TICHY, R. F.: Sequences, Discrepancies and Applications. Springer, Berlin, Heidelberg, 1997.
- GREKOS, G.: The density set (a survey), Tatra Mt. Math. Publ. 31 (2005), 103–111.
- GREKOS, G.: On various definitions of density (survey), Tatra Mt. Math. Publ. 31 (2005), 17–27.
- IACO, M. R.—PAŠTÉKA, M.—TICHY, R. F.: Measure density for set decompositions and uniform distribution,Rend. Circ. Mat.Palermo 64 (2015), no. 2, 323–339.
- KUIPERS, L.— NIEDERREITER, H.: Uniform Distribution of Sequences. John Wiley and Sons, N.Y. London, Sydney Toronto, 1974.
- LEONETTI, P.—TRINGALI, S.: On the notions of upper and lower density,Proc. Edinb. Math.Soc., II.Ser. 63 (2020), no. 1, 139–167.
- PAŠTÉKA, M.: Metrics on N and the distribution of sequences, Tatra Mt. Math. Publ. 82 (2022), 29–52.
- PAŠTÉKA,M.—TICHY, R.: Measurable sequences, Riv. Mat. Univ. Parma (N.S.) 10 (2019), no. 1, 63–84.
- PAŠTÉKA, M.: Central limit theorem and the distribution of sequences, Tatra Mt. Math. Publ. 77 (2020), 43–52.
- STRAUCH, O.: Distribution of Sequences: A Theory. VEDA, Bratislava, Academia, Prague, 2019.
- SCHOENBERG, I.:Über die asymptotische Verteilung reeler Zahlen mod 1.,Math. Z. (1928), 171–199.
- TOLAND, J.: The Dual of L∞ (X, ℒ, λ), Finitely Additive Measures, and Weak Convergence. A Primer, SpringerBriefs in Mathematics Springer, Cham, 2020.
- WEYL, H.: Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann, 77 (1916), 313–352.
- YOSIDA, K.—HEWITT, E.: Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46–66.