Have a personal or library account? Click to login
Laguerre-Bessel Transform and Generalized Lipschitz Classes Cover

Laguerre-Bessel Transform and Generalized Lipschitz Classes

Open Access
|Nov 2023

References

  1. JEBBARI, E.—SIFI, M.—SOLTANI, F.: Laguerre-Bessel wavelet transform, Glob. J. Pure Appl. Math. 1 (2005), 13–26.
  2. FARAUT, J.—HARZALLAH, K. : Deux cours d’Analyse Harmonique.In: Ecole d’été d’Analyse Harmonique de Tunis,Birkhaüser, Boston 1984.
  3. KORTAS, H.—SIFI, M.: Lévy-Khintchine formula and dual convolution semigroups associated with Laguerre and Bessel functions. In: ICPA98 (Hammamet). Potential Anal. Vol. 15 (2001), no. 1–2, pp. 43–58.
  4. NEGZAOUI, S.—REBHI, S.: On the concentration of a function and its Laguerre-Bessel transform, Math. Inequal. Appl. 22 (2019), no. 3, 825–836.
  5. TITCHMARSH, E. C.: Introduction to the Theory of Fourier Integral. Oxford : Clarendon Press, 1948.
  6. RAKHIMI, L.—DAHER, R.: Modulus of smoothness and K-functionals constructed by generalized Laguerre-Bessel operator, Tatra Mt. Math. Publ. 81 (2022) no. 1, 107–116.
  7. RAKHIMI, L.—DAHER, R.: An analog of Titchmarsh’s theorem for the Laguerre-Bessel transform, Arab J. Math. Sci. Article publication date: 27 March 2023.
  8. BOAS, R. P., JR.: Integrability Theorems for Trigonometric Transforms.In: Results in Mathematics and Related Areas, Vol. 38, Springer-Verlag, New York, 1967.
  9. MORICZ, F.: Absolutely convergent Fourier integrals and classical function spaces,Arch. Math. 91 (2008), no. 1, 49-–62.
  10. MORICZ, F.: Absolutely convergent Fourier series and function classes,J.Math. Anal. Appl. 324 (2006), no. 2, 1168–1177.
  11. MORICZ, F.: Higher order Lipschitz classes of functions and absolutely convergent Fourier series, Acta Math. Hungar. 120 (2008), no. 4, 355–366.
  12. TIKHONOV, S.: Smoothness conditions and Fourier series, Math. Inequal. Appl. 20 (2007), no. 2, 229–242.
  13. TIKHONOV, S.: On generalized Lipschitz classes and Fourier series, Z. Anal. Anwendungen 23 (2004), no. 4, 745–764.
  14. VOLOSIVETS, S. S.: Fourier transforms and generalized Lipschitz classes in uniform metric, J. Math. Anal. Appl. 383 (2011), no. 2, 344–352.
  15. VOLOSIVETS, S. S.: Multiple Fourier coefficients and generalized Lipschitz classes in uniform metric, J. Math. Anal. Appl. 427 (2015), no. 2, 1070–1083. https://doi.org/10.1016/j.jmaa.2015.02.011.
  16. RAKHIMI, L.—DAHER, R.: Boas-type theorems for Laguerre type operator, J.Pseudo-Differ. Oper. Appl. 13 (2022), no. 3, paper no. 42, 14 pp.
  17. LOUALID, E. M.—ELGARGATI, A.—BERKAK, E. M. DAHER, R.: Boas-type theorems for the Bessel transform, Rev. R. Acad. Cienc. Exactas Fís.Nat.Ser. A Mat. RACSAM 115 (2021), no. 3, Paper no. 141, 12 pp. https://doi.org/10.1007/s13398-021-01087-3.
  18. BERKAK, E. M.—LOUALID, E. M.—DAHER, R.: Boas-type theorems for the q-Bessel Fourier transform, Anal. Math. Phys. 11 (2021), no. 3, paper no. 10, 14 pp.
DOI: https://doi.org/10.2478/tmmp-2023-0029 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 155 - 168
Submitted on: Mar 15, 2023
Published on: Nov 16, 2023
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Larbi Rakhimi, Abdelmajid Khadari, Radouan Daher, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.