References
- HAGA, K. B.âSCHRITTESSER, D.âTĂRNQUIST, A.: MAD families, determinacy, and forcing, J. Math. Log. 22 (2021), no. 1, 2150026.
- BARTOSZYĆSKI, T.âJUDAH, H.: Set Theory: On the Structure of the Real Line. CRC Press (Taylor & Francis Group) London, 1995
- BLASS, A.: Combinatorial cardinal characteristics of the continuum, In: (M. Foreman, A. Kanamori, eds.), Handbook of Set Theory. Springer-Verlag, Berlin 2010, pp. 395â489.
- BUKOVSKĂ, Z.: Thin sets in trigonometrical series and quasinormal convergence,Math. Slovaca 40 (1990), no. 1, 53â62.
- CsĂĄszĂĄr,Ă.âLaczkovich, M. Discrete and equal convergence, Stud. Sci. Math. Hungar. 10 (1975), 463â472.
- FARKAS, B.: Combinatorics of Borel Ideals Ph.D. Thesis, Budapest University of Technology and Economics Department of Algebra, Institute of Mathematics Supervisor: Prof. Lajos Soukup, Alfréd Rényi Institute of Mathematics Hungarian Academy of Sci. 2011.
- FARKAS, B.âSOUKUP, L.: More on cardinal invariants of analytis P-ideals, Commentationes Mathematicae Universitatis Carolinae 50 (2009), no. 2, 281â295.
- FARKAS, B.âZDOMSKYY, L.: Ways of destruction, J. Symb. Log. 87 (2022), no. 3, 938â966.
- FILIPĂW, R.âSTANISZEWSKI, M.: On ideal equal convergence, Cent. Eur. J. Math. 12 (2014), no. 6, 896â910.
- R. FILIPĂW, R.âSTANISZEWSKI, M.: Pointwise versus equal (quasi-normal) convergence via ideals, J. Math. Anal. Appl. 422 (2015), no. 2, 995â1006.
- R. FILIPĂW, R.âSZUCA, P.: Three kinds of convergence and the associated â-Baire classes, J. Math. Anal. Appl. 391 (2012), no. 1, 1â9.
- GUZMĂN-GONZĂLEZ, O.âHRUĆ ĂK, M.â MARTĂNEZ-RANERO, C. A.âRAMOS-GARĂA, U. A.: Generic existence of MAD families, J. Symb. Log. 82 (2017), no. 1, 303â316.
- HALBEISEN, L.J.: Combinatorial Set Theory With a Gentle Introduction to Forcing. Springer-Verlag, Berlin, 2012.
- HERNĂNDEZ-HERNĂNDEZ, F.âHRUĆ ĂK, M.: Cardinal invariants of analytic P-ideals, Canad. J. Math. 59 (2007), no. 3, 575â595.
- HRUĆ ĂK, M.: Combinatorics of filters and ideals, Contemp. Math. 533 (2011), 29â69.
- HRUĆ ĂK, M.: KatÄtov order on Borel ideals, Arch. Math. Logic 56 (2017), no. 3, 831â847.
- HRUĆ ĂK, M.âGARÄIA-FERREIRA, S.: Ordering MAD families a la KatÄtov,J. Symb. Log. 68 (2003), no. 4, 1337â1353.
- JALALI-NAINI, S.-A.: The Monotone Subsets of Cantor Space, Filters and Descriptive Set Theory: Ph.D. Thesis, University of Oxford, 1976.
- LACZKOVICH, M.âRECĆAW, I.: Ideal limits of sequences of continuous functions, Fundam. Math. 203 (2009), no. 1, 39â46.
- LAFLAMME, C.: Filter games and combinatorial properties of winning strategies, Contemp. Math. 192 (1995), 51â67.
- MAÄAJ, M.âSLEZIAK, M.: âđŠ-convergence, Real Anal. Exchange 36 (2010/11), no. 1, 177â193.
- MARTON, A.âĆ UPINA, J.: On P -like ideals induced by disjoint families,J.Math. Anal. Appl. 528 (2023), no. 2, Paper no. 127551.
- MEZA ALCĂNTARA, D.: Ideals and filters on countable sets: Ph. D. Thesis, Universidad Nacional Autonoma de Mexico, Mexico, 2009.
- REPICKĂ, M.: Cardinal invariants and the collapse of the continuum by Sacks forcing, J. Symb. Log. 73 (2008), no. 2, 711â727.
- STANISZEWSKI, M.: On ideal equal convergence II,J.Math. Anal.Appl. 451 (2017), no. 2, 1179â1197.
- SZEMERĂDI, E.: On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), no. 1, 199â245.
- Ć UPINA, J.: Ideal QN-spaces, J. Math. Anal. Appl. 435 (2016), no. 1, 477â491.
- TALAGRAND, M.: Compacts de fonctions mesurables et filtres non mesurables,Acta Arith. 67 (1980), no. 1, 13â43.