Have a personal or library account? Click to login
On Strong Porosity of Some Families of Functions Cover
Open Access
|Nov 2023

References

  1. BRUCKNER, A. M.: Differentiation of Real Functions. Lecture Notes in Math. Vol. 659, Springer Verlag, Berlin, 1978.
  2. FILIPCZAK, M.—HEJDUK, J.: On topologies associated with the Lebesgue measure, Tatra Mt. Math. Publ. 28 (2004), 187–197.
  3. HASHIMOTO, H.: On the *-topology and its application, Fund. Math. 91 (1976), 5–10.
  4. HEJDUK, J.—WIERTELAK, R.: On the generalization of density topologies on the real line, Math. Slovaca 64 (2014), no. 5, 1267–1276.
  5. IVANOVA, G.—KARASIŃSKA, A.—WAGNER-BOJAKOWSKA, E.: Families of Darboux functions and topology having (𝒥 ∗)-property, Topology Appl. 258 (2019), 534–542.
  6. IVANOVA, G.—WAGNER-BOJAKOWSKA, E.: On some modification of Świątkowski property, Tatra Mt. Math. Publ. 58 (2014), 101–109.
  7. IVANOVA, G.—WAGNER-BOJAKOWSKA, E.: On some modification of Darboux property, Math. Slovaca 66 (2016), no. 1, 79–88.
  8. IVANOVA, G.—WAGNER-BOJAKOWSKA, E.: Porous subsets in the space of functions having the Baire property, Math. Slovaca 67 (2017), no. 6, 1333–1344.
  9. KOWALCZYK, S.—TUROWSKA, M.: Methods of comparison of families in porosity terms, Georgian Math. J. 26 (2019), no. 4, 643–654.
  10. KUCNER, J.— PAWLAK, R.— ŚWIĄTEK, B.: On small subsets of the space of Darboux functions, Real Anal. Exchange 25 (1999), no. 1, 343–358.
  11. LEVINE, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
  12. NEUBRUNNOVÁ, A.: On certain generalizations of the notion of continuity, Matematický časopis 23 (1973), no. 4, 374–380.
  13. O’MALLEY, R. J.: Approximately differentiable functions: The r topology, Pacific J. Math. 72 (1977), 207–222.
  14. POREDA, W.— WAGNER-BOJAKOWSKA, E.— WILCZYŃSKI, W.: A category analogue of the density topology, Fund. Math. 125 (1985), 167–173.
  15. STROBIN, F.—WIERTELAK, R.: Algebrability of 𝒮-continuous functions, Topology Appl. 231 (2017), 373–385.
  16. STROBIN, F.—WIERTELAK, R.: On a generalization of density topologies on the real line, Topology Appl. 199 (2016), 1–16.
  17. WIDZIBOR, M.: On the Topologies Generated by Regular Sequences of Measurable Sets. Doctoral Thesis, Łodź University Press, 2021.
  18. WIERTELAK, R.: A generalization of density topology with respect to category, Real Anal. Exchange 32 (2006/2007), no. 1, 273–286.
  19. ZAJIČEK, L.: Porosity and σ-porosity, Real Anal Exchange 13 (1987-88), 314–350.
DOI: https://doi.org/10.2478/tmmp-2023-0023 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 45 - 56
Submitted on: Oct 10, 2022
Published on: Nov 16, 2023
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Jacek Hejduk, Gertruda Ivanova, Renata Wiertelak, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.