Have a personal or library account? Click to login
Multipliers of Variationally Mcshane Integrable Functions in Locally Convex Space Cover

Multipliers of Variationally Mcshane Integrable Functions in Locally Convex Space

Open Access
|Nov 2023

References

  1. JAKER ALI, SK.—CHAKRABORTY, N. D.: Pettis integration in locally convex spaces, Anal. Math. 23 (1997), 241–257.
  2. BLONDIA, C.: Integration in locally convex spaces, Simon Stevin, (A Quaterly Journal of Pure and Applied Math.) 55 (1981), no. 3, 81–102.
  3. CANDELORO, D.—PIAZZA, L. DI—MUSIAL, K.—SAMBUCINI, A. R.: Gauge integrals and selections of weakly compact valued multifunctions, J. Math. Anal. Appl. 441 (2016), no. 1, 293–308.
  4. PIAZZA, L. DI—MARRAFFA, V.: A characterization of variationally McShane integrable Banach-space valued functions, Illinois J. Math. 45 (2001), no. 1, 279–280.
  5. PIAZZA, L. DI—MUSIAL, K.: An equivalent definition of the vector-valued McShane integral by means of partition of unity, Studia Math. 151 (2002), no. 2, 175–185.
  6. PIAZZA, L. DI—MUSIAL, K.—MARRAFFA, V.—SAMBUCINI, A. R.: Convergence for varying measures, J. Math. Anal. Appl. 518 (2023), artile no. 126782, https://doi.org/10.1016/j.jmaa.2022.126782
  7. FREMLIN,D.H.: The generalized McShane integral, Illinois J. Math. 39 (1995), 39-67.
  8. GARNIR, H. G.— WILDE, M. DE—SCHMETS, J.: Analyse Fonctionnelle. T.I., Théorie générale, Birkhauser Verlag, Basel, 1968.
  9. GORDON, R.A.: The Integrals of Lebesgue, Denjoy, Perron and Henstock.In: Graduate Studies in Mathematics Vol. 4, AMS, Providence RI, 1994.
  10. MARRAFFA, V.: Riemann type integral for functions taking values in a locally convex space, Czech. Math. J. 56 (2006), 475–489.
  11. MARRAFFA, V.: Non absolutely convergent integrals of functions taking values in a locally convex space, Rocky Mountain J. Math. 36 (2006), 1577–1593.
  12. MARRAFFA, V.: The variational McShane integral in locally convex spaces, Rocky Mountain J. Math. 39 (2009), 1993–2013.
  13. RUDIN, W.: Real and Complex Analysis. Third edition, McGraw Hill Book Co., New York, 1987.
  14. RUDIN, W.: Functional Analysis. Tata McGraw Hill, New Delhi, 1982.
  15. SCHAEFER, H. H.—WOLFF, M. P.: Topological Vector Spaces. Second edition, Graduate Texts in Mathematics, Vol. 3, Springer-Verlag, New York, 1999.
  16. THOMSON, B. S.: Derivatives of interval functions,Mem. Amer. Math. Soc. 93 (1991), no. 452, 1991.
DOI: https://doi.org/10.2478/tmmp-2023-0021 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 17 - 26
Submitted on: Aug 20, 2022
Published on: Nov 16, 2023
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Savita Bhatnagar, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.