References
- AGARWAL, R. P.—BOHNER, M.—LI, T. ET AL.: Oscillation theorems for fourth-order half-linear delay dynamic equations with damping, Mediterr. J. Math. 11 (2014), 463–475.
- AGARWAL, R. P.—BOHNER, M.—LI, T.—ZHANG, C.: Oscillation criteria for second--order dynamic equations on time scales, Appl. Math. Lett. 31 (2014), 34–40.
- ANDERSON, D. R.—ZAFER, A.: Nonlinear oscillation of second-order dynamic equations on time scales, Appl. Math. Lett. 22 (2009), 1591–1597.
- BACULIKOVA, B.: Oscillation and asymptotic properties of second order half-linear differential equations with mixed deviating arguments,Mathematics, 9 (2021), 2552.
- BOHNER, M.—GEORGIEV, S. G.: Multivariable Dynamic Calculus on Time Scales. Springer-Verlag, Berlin, 2016.
- BOHNER, M.—PETERSON, A.: Dynamic Equations on Time Scales. An introduction with applications.Birkhäuser, Basel 2001.
- BOHNER, M.—PETERSON, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston, MA, 2003.
- BOHNER, M.—SAKER, S. H.: Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math. 34 (2004), 1239–1254.
- CHHATRIA, G. N.: Some remark on oscillation of second order impulsive delay dynamic equations on time scales, Tatra Mt. Math. Publ. 76 (2020), 115–126.
- DENG, X. H.—WANG, Q. R.—ZHOU, Z.: Oscillation criteria for second order nonlinear delay dynamic equations on time scales, Appl. Math. Comput. 269 (2015), 834–840.
- ERBE, L.—PETERSON, A.—SAKER, S. H.: Oscillation criteria for second-order nonlinear delay dynamic equations, J. Math. Anal. Appl. 333 (2007), 505–522.
- GRACE, S. R.—AGARWAL, R. P.—SAEJIE, W.: Monotone and oscillatory behavior of certain fourth order nonlinear dynamic equations, Dynam. Systems Appl. 19 (2010), no. 1, 25–32.
- GRACE, S. R.—SUN, S.—WANG, Y.: On the oscillation of fourth order strongly superlinear and strongly sublinear dynamic equations J. Appl. Math. Comput. 44 (2014), 119–132.
- JIA, B. G.—ERBE, L.—PETERSON, A.: An oscillation theorem for second order super-linear dynamic equations on time scales, Appl. Math. Comput. 219 (2013), 10333–10342.
- MARTYNYUK, A. A.: Stability Theory for Dynamic Equations on Time Scales. Birkhäuser/Springer, Basel, 2016.
- MIGDA, J.: Approximative solutions of difference equations, Electron. J. Qual. Theory Differ. Equ. 13 (2014), 1–26.
- MIGDA, J.: Qualitative approximation of solutions to difference equations, Electron. J. Qual. Theory Differ. Equ. 32 (2015), 1–26.
- MIGDA, J.—MIGDA, M.: Approximation of solutions to nonautonomous difference equations, Tatra Mt. Math. Publ. 71 (2018), 109–121.
- MIGDA, J.—MIGDA, M.—ZDANOWICZ, M.: Asymptotic properties of solutions to fourth order difference equations, J. Comput. Appl. 362 (2019), 68–82.
- LI, T.—THANDAPANI, E.—TANG S.: Oscillation theorems for fourth-order delay dynamic equations on time scales, Bull. Math. Anal. Appl. 3 (2011), 190–199.
- OSTASZEWSKA, U.—SCHMEIDEL, E.—ZDANOWICZ, M.: Existence of positive bounded solutions of system of three dynamic equations with neutral term on time scales, Tatra Mt. Math. Publ. 71 (2018), 123–137.
- SUN, T. X.—YU, W. Y.—HE, Q. L.: New oscillation criteria for higher order delay dynamic equations on time scales, Adv. Difference Equ. 2014 (2014), 328, 16 pp.
- SUN, T. X.—YU, W. Y.—XI, H. J.: Oscillatory behavior and comparison for higher order nonlinear dynamic equations on time scales, J. Appl. Math. Inform. 30 (2012), 289–304.
- WU, X.—SUN, T.—XI, H.—CHEN, C.: Kamenev-type oscillation criteria for higher-order nonlinear dynamic equations on time scales, Adv. Difference Equ. 2013 (2013), paper no. 248, 19 pp.
- ZHANG, C.—AGARWAL, R. P.—BOHNER, M. ET AL.: Oscillation of fourth-order delay dynamic equations, Sci. China Math. 58 (2015), 143–160.
- ZHANG, C.—LI, T.—AGARWAL, R. P. ET AL.: Oscillation results for fourth-order nonlinear dynamic equations, Appl. Math. Lett. 25 (2012), 2058–2065.
- ZHOU, Y.: Nonoscillation of higher order neutral dynamic equations on time scales, Appl. Math. Lett. 94 (2019), 204–209.
- ZHOU, Y.—HE J. W.—AHMAD, B.—ALSAEDI, A.: Necessary and sufficient conditions for oscillation of fourth order dynamic equations on time scales, Adv. Difference Equ. 2019 (2019), paper no. 308, 17 pp.
- QI, Y.—YU, J.: Oscillation criteria for fourth-order nonlinear delay dynamic equations, Electron. J. Differ. Equ. 79 (2013), 1314–1344.