Have a personal or library account? Click to login
Asymptotic Properties of Solutions to Fourth-Order Difference Equations on Time Scales Cover

Asymptotic Properties of Solutions to Fourth-Order Difference Equations on Time Scales

Open Access
|Jun 2023

References

  1. AGARWAL, R. P.—BOHNER, M.—LI, T. ET AL.: Oscillation theorems for fourth-order half-linear delay dynamic equations with damping, Mediterr. J. Math. 11 (2014), 463–475.
  2. AGARWAL, R. P.—BOHNER, M.—LI, T.—ZHANG, C.: Oscillation criteria for second--order dynamic equations on time scales, Appl. Math. Lett. 31 (2014), 34–40.
  3. ANDERSON, D. R.—ZAFER, A.: Nonlinear oscillation of second-order dynamic equations on time scales, Appl. Math. Lett. 22 (2009), 1591–1597.
  4. BACULIKOVA, B.: Oscillation and asymptotic properties of second order half-linear differential equations with mixed deviating arguments,Mathematics, 9 (2021), 2552.
  5. BOHNER, M.—GEORGIEV, S. G.: Multivariable Dynamic Calculus on Time Scales. Springer-Verlag, Berlin, 2016.
  6. BOHNER, M.—PETERSON, A.: Dynamic Equations on Time Scales. An introduction with applications.Birkhäuser, Basel 2001.
  7. BOHNER, M.—PETERSON, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston, MA, 2003.
  8. BOHNER, M.—SAKER, S. H.: Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math. 34 (2004), 1239–1254.
  9. CHHATRIA, G. N.: Some remark on oscillation of second order impulsive delay dynamic equations on time scales, Tatra Mt. Math. Publ. 76 (2020), 115–126.
  10. DENG, X. H.—WANG, Q. R.—ZHOU, Z.: Oscillation criteria for second order nonlinear delay dynamic equations on time scales, Appl. Math. Comput. 269 (2015), 834–840.
  11. ERBE, L.—PETERSON, A.—SAKER, S. H.: Oscillation criteria for second-order nonlinear delay dynamic equations, J. Math. Anal. Appl. 333 (2007), 505–522.
  12. GRACE, S. R.—AGARWAL, R. P.—SAEJIE, W.: Monotone and oscillatory behavior of certain fourth order nonlinear dynamic equations, Dynam. Systems Appl. 19 (2010), no. 1, 25–32.
  13. GRACE, S. R.—SUN, S.—WANG, Y.: On the oscillation of fourth order strongly superlinear and strongly sublinear dynamic equations J. Appl. Math. Comput. 44 (2014), 119–132.
  14. JIA, B. G.—ERBE, L.—PETERSON, A.: An oscillation theorem for second order super-linear dynamic equations on time scales, Appl. Math. Comput. 219 (2013), 10333–10342.
  15. MARTYNYUK, A. A.: Stability Theory for Dynamic Equations on Time Scales. Birkhäuser/Springer, Basel, 2016.
  16. MIGDA, J.: Approximative solutions of difference equations, Electron. J. Qual. Theory Differ. Equ. 13 (2014), 1–26.
  17. MIGDA, J.: Qualitative approximation of solutions to difference equations, Electron. J. Qual. Theory Differ. Equ. 32 (2015), 1–26.
  18. MIGDA, J.—MIGDA, M.: Approximation of solutions to nonautonomous difference equations, Tatra Mt. Math. Publ. 71 (2018), 109–121.
  19. MIGDA, J.—MIGDA, M.—ZDANOWICZ, M.: Asymptotic properties of solutions to fourth order difference equations, J. Comput. Appl. 362 (2019), 68–82.
  20. LI, T.—THANDAPANI, E.—TANG S.: Oscillation theorems for fourth-order delay dynamic equations on time scales, Bull. Math. Anal. Appl. 3 (2011), 190–199.
  21. OSTASZEWSKA, U.—SCHMEIDEL, E.—ZDANOWICZ, M.: Existence of positive bounded solutions of system of three dynamic equations with neutral term on time scales, Tatra Mt. Math. Publ. 71 (2018), 123–137.
  22. SUN, T. X.—YU, W. Y.—HE, Q. L.: New oscillation criteria for higher order delay dynamic equations on time scales, Adv. Difference Equ. 2014 (2014), 328, 16 pp.
  23. SUN, T. X.—YU, W. Y.—XI, H. J.: Oscillatory behavior and comparison for higher order nonlinear dynamic equations on time scales, J. Appl. Math. Inform. 30 (2012), 289–304.
  24. WU, X.—SUN, T.—XI, H.—CHEN, C.: Kamenev-type oscillation criteria for higher-order nonlinear dynamic equations on time scales, Adv. Difference Equ. 2013 (2013), paper no. 248, 19 pp.
  25. ZHANG, C.—AGARWAL, R. P.—BOHNER, M. ET AL.: Oscillation of fourth-order delay dynamic equations, Sci. China Math. 58 (2015), 143–160.
  26. ZHANG, C.—LI, T.—AGARWAL, R. P. ET AL.: Oscillation results for fourth-order nonlinear dynamic equations, Appl. Math. Lett. 25 (2012), 2058–2065.
  27. ZHOU, Y.: Nonoscillation of higher order neutral dynamic equations on time scales, Appl. Math. Lett. 94 (2019), 204–209.
  28. ZHOU, Y.—HE J. W.—AHMAD, B.—ALSAEDI, A.: Necessary and sufficient conditions for oscillation of fourth order dynamic equations on time scales, Adv. Difference Equ. 2019 (2019), paper no. 308, 17 pp.
  29. QI, Y.—YU, J.: Oscillation criteria for fourth-order nonlinear delay dynamic equations, Electron. J. Differ. Equ. 79 (2013), 1314–1344.
DOI: https://doi.org/10.2478/tmmp-2023-0016 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 61 - 76
Submitted on: Jan 5, 2023
Published on: Jun 28, 2023
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Urszula Ostaszewska, Ewa Schmeidel, Małgorzata Zdanowicz, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.