Have a personal or library account? Click to login
Asymptotic Properties of Solutions to Discrete Sturm-Liouville Monotone Type Equations Cover

Asymptotic Properties of Solutions to Discrete Sturm-Liouville Monotone Type Equations

By: Janusz Migda and  Ewa Schmeidel  
Open Access
|Jun 2023

References

  1. AGARWAL, R. P.: Difference Equations and Inequalities: Theory, Methods and Applications. Marcel Dekker, New York, 2000.
  2. AHLBRANDT, C. D.—PETERSON, A. C.: Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations. Kluwer Academic Publishers, Boston, 1996.
  3. AMREIN, W. O.—HINZ, A. M.—PEARSON, D. B.: (eds.), Sturm-Liouville theory. Past and present. (Selected survey articles based on lectures presented at a colloquium and workshop in Geneva, Italy, September 15–19, 2003 to commemorate the 200th anniversary of the birth of Charles François Sturm.) Birkhüser Verlag, Basel, 2005.
  4. CHENG, S. S.—LI, J.—PATULA, W. T.: Bounded and zero convergent solutions of second-order difference equations, J. Math. Anal. Appl. 141 (1989), no. 2, 463–483. DOI: 10.1016/0022-247X(89)90191-1
  5. HILSCHER, R.Š.: Spectral and oscillation theory for general second order Sturm--Liouville difference equations, Adv. Difference Equ. 2012, paper no. 82, (2012), 19 pp.
  6. HINTON, D. B.—LEWIS, R. T.: Spectral analysis of second order difference equations, J. Math. Anal. Appl. 63 (1978), 421–438. DOI:10.1016/0022-247X(78)90088-4
  7. HOOKER, J. W.—PATULA, W. T.: A second-order nonlinear difference equation: oscillation and asymptotic behavior, J. Math. Anal. Appl. 91 1983, no. 1, 9–29.
  8. MIGDA, J.: Approximative solutions of difference equations, Electron. J. Qual. Theory Differ. Equ. 2014 (2014), paper no. 13, 26 pp.
  9. MIGDA, M.: Asymptotic behaviour of solutions of nonlinear delay difference equations, Fasc. Math. 31 (2001) 57–62.
  10. MIGDA, J.—MIGDA, M.—SCHMEIDEL, E.: Asymptotic properties of solutions to discrete Volterra monotone type equations, Symmetry 2021, 13.6: 918, https://doi.org/10.3390/sym13060918
  11. MIGDA, J.—MIGDA, M.—ZBĄSZYNIAK, Z.: Asymptotically periodic solutions of second order difference equations, Appl. Math. Comput. 350 (2019), 181–189.
  12. MIGDA, J.—NOCKOWSKA-ROSIAK, M.: Asymptotic properties of solutions to difference equations of Sturm-Liouville type, Appl. Math. Comput. 340 (2019), 126–137.
  13. MIGDA, J.—NOCKOWSKA-ROSIAK, M.—MIGDA, M.: Properties of solutions of generalized Sturm-Liouville discrete equations Bull. Malays. Math. Sci. Soc. 44 (2021), no. 5, 3111–3127.
  14. NOCKOWSKA-ROSIAK, M.: Bounded solutions and asymptotic stability of nonlinear second-order neutral difference equations with quasi-differences, Turkish J. Math. 42 (2018), no. 4, 1956–1969. DOI: 10.3906/mat-1708–29.
  15. ŘEHÁK, P.: Asymptotic formulae for solutions of linear second order difference equations, J. Difference Equ. Appl. 22 (2016), no. 1, 107–139. DOI:10.1080/10236198.2015.1077815
DOI: https://doi.org/10.2478/tmmp-2023-0014 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 35 - 44
Submitted on: Nov 14, 2022
Published on: Jun 28, 2023
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Janusz Migda, Ewa Schmeidel, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.