Have a personal or library account? Click to login
Nonlinear Katugampola Fractional Differential Equation with Mixed Boundary Conditions Cover

Nonlinear Katugampola Fractional Differential Equation with Mixed Boundary Conditions

Open Access
|Jun 2023

References

  1. YANG, X. J.—GAO, F.—JU, Y.: General Fractional Derivatives with Applications in Viscoelasticity. Academic Press, Cambridge, MA, USA, 2020.
  2. HILFER, R.: Applications of Fractional Calculus in Physics. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2000.
  3. KOSZTO LOWICZ T.—DUTKIEWICZ A.: Boundary conditions at a thin membrane for normal diffusion, classical subdiffusion, and slow subdiffusion processes, Math. Methods Appl. Sci. 43 (2020), no. 18, 10500–10510.
  4. MEDVED, M.: Asymptotic integration of some classes of fractional differential equations, Tatra Mt. Math. Publ. 54 (2013), 119–132.
  5. LATAWIEC, K. J.—LUKANISZYN, M.—STANISLAWSKI, R.: (eds.) Advances in modelling and control of non-integer order systems.In: Lecture Notes in Electrical Engineering Vol. 320, Springer-Verlag, Berlin, 2014.
  6. KACZOREK, T.: Selected problems of fractional systems theory. In: Lecture Notes in Control and Information Sciences Vol. 411, Springer-Verlag, Berlin, 2011.
  7. ORTIGUEIRA, M. D.—MACHADO, J. A. T.: Fractional Calculus applications in Signals and Systems,SignalProcessing 86 (2006) no. 10, 2503–2504. https://doi.org/10.1016/j.sigpro.2006.02.001
  8. KATUGAMPOLA, U. N.: New approach to a genaralized fractional integral, Appl. Math. Comput. 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062
  9. KATUGAMPOLA, U. N.: A new approach to generalized fractional derivatives, Bull. Math. Anal. App. 6 (2014), 1–15.
  10. LUPIŃSKA, B.: Properties of the Katugampola fractional operators, Tatra Mt. Math. Publ. 79 (2021), no. 2, 135–148,
  11. LUPIŃSKA, B.—ODZIJEWICZ, T.: A Lyapunov-type inequality with the Katugampola fractionl derivative, Math. Methods Appl. Sci. 41 (2018), no. 18, 8985–8996, https://doi.org/10.1002/mma.4782
  12. LUPIŃSKA, B.—SCHMEIDEL, E.: Analysis of some Katugampola fractional differential equations with fractional boundary conditions, Math. Biosci. Eng. 18 (2021), no. 6, 7269–7279, DOI: 10.3934/mbe.2021359.
  13. BASTI, B.—ARIOUA, Y.—BENHAMIDOUCHE, N.: Existence and uniqueness of solutions for nonlinear Katugampola fractional differential equations, J. Math. Appl. 42, (2019), 35–61,
  14. MAHMUDOV, N.—EMIN, S.: Fractional-order boundary value problems with Katugampola fractional integral conditions, Adv. Difference. Equ. 2018, paper no. 81, (2018), pp. 17.
DOI: https://doi.org/10.2478/tmmp-2023-0013 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 25 - 34
Submitted on: Nov 17, 2022
Published on: Jun 28, 2023
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Barbara Lupińska, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.