Have a personal or library account? Click to login
Discrete Polylogarithm Functions Cover
By: Tom Cuchta and  Dallas Freeman  
Open Access
|Jun 2023

References

  1. BAS, E.—OZARSLAN, R.—YILMAZER, R.: Spectral structure and solution of fractional hydrogen atom difference equations,AIMS Mathematics 5 (2020), 1359–1371.
  2. BOHNER, M.—CUCHTA, T.: The Bessel difference equation, Proc. Am. Math. Soc. 145 (2017), 1567–1580.
  3. BOHNER, M.—CUCHTA, T.: The generalized hypergeometric difference equation, Demonstr. Math. 51 (2018), 62–75.
  4. CUCHTA, T.—PAVELITES, M.—TINNEY, R.: The Chebyshev difference equation, Mathematics 8 (2020) no. 1, DOI:10.3390/math8010074.
  5. CUCHTA, T.—LUKETIC, R.: Discrete hypergeometric Legendre polynomials, Mathematics 9, (2021), no. 20, DOI: 103390/math9202546.
  6. CUCHTA, T.—GROW, D.—WINTZ, N.: Discrete matrix hypergeometric functions,J. Math. Anal. Appl. 518(2) (2023), no 2, https://doi.org/10.1016/j.jmaa.2022.126716
  7. ERDÉLYI, A.—TRICOMI, F.: The asymptotic expansion of a ratio of gamma functions, Pacific J. Math 1 (1951), 133–142.
  8. GANIE, J.—JAIN, R.: Basic analogue of Legendre polynomial and its difference equation, Asian J. Math. Stat. 12 (2019), 1–7.
  9. LEWIN, L.: Polylogarithms and Associated Functions. (With a foreword by A. J. Van der Poorten). North-Holland Publishing Co., New York-Amsterdam, 1981.
  10. LEWIN, L.: Editor. Structural properties of polylogarithms. Mathematical Surveys and Monographs, Vol. 37. American Mathematical Society, Providence, RI, (1991).
  11. SACHDEV, S.: Polylogarithm identities in a conformal field theory in three dimensions, Phys. Lett. B 309 (1993), 285–288.
  12. SLAVÍK, A.: Discrete Bessel functions and partial difference equations, J. Difference Equ. Appl. 24 (2018), 425–437.
  13. SLAVÍK, A.: Asymptotic behavior of solutions to the semidiscrete diffusion equation, Appl. Math. Lett. 106 (2020), https://doi.org/10.1016/j.aml.2020.106392
  14. SLAVÍK, A.: Spatial maxima, unimodality, and asymptotic behaviour of solutions to discrete diffusion-type equations, J. Difference Equ. Appl. 28 (2022), 126–140.
  15. STEWART, S.: Blackbody radiation functions and polylogarithms, J. Quant. Spectrosc. Radiat. Transf. 113 (2012), 232–238.
  16. ULRICH, M.—SENG, W.—BARNES, P.: Solutions to the Fermi-Dirac integrals in semiconductor physics using Polylogarithms, J. Comput. Electronics 1 (2002), 431–434.
  17. MOLLI, M.—VENKATARAMANIAH, K.—VALLURI, S.: The polylogarithm and the Lambert W functions in thermoelectrics, Canadian J. Physics 89 (2011), 1171–1178.
DOI: https://doi.org/10.2478/tmmp-2023-0012 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 19 - 24
Submitted on: Sep 30, 2022
Published on: Jun 28, 2023
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Tom Cuchta, Dallas Freeman, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.