Have a personal or library account? Click to login
On The Geometric Determination of Extensions of Non-Archimedean Absolute Values Cover

On The Geometric Determination of Extensions of Non-Archimedean Absolute Values

By: Mohamed Faris and  Lhoussain El Fadil  
Open Access
|Mar 2023

References

  1. [1] BROWN, R.: Roots of generalized Schönemann polynomials in henselian extension fields, Indian J. Pure Appl. Math. 39 (2008), 403–410.
  2. [2] COHEN, H.: A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin, 1993.10.1007/978-3-662-02945-9
  3. [3] DEAJIM, A.—EL FADIL, L.—NAJIM, A.: On a theorem of Dedekind (submitted).
  4. [4] EL FADIL, L.—FARIS, M.: On the Irreducible Factors of a Polynomial and Applications to Extensions of Absolute Values, IntechOpen, https://www.intechopen.com/online-first/on-the-irreducible-factors-of-a-poly nomial-and-applications-to-extensions-of-absolute-values
  5. [5] EL FADIL, L.: On Newton polygon echniques and factorization of polynomials over Henselian fields, J. Algebra Appl. 19 (2020), no. 10, doi: 10.1142/S0219498820501881.10.1142/S0219498820501881
  6. [6] GUÀRDIA, J.— MONTES, J.—NART, E.: Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. 364 (2012), no. 1, 361–416.
  7. [7] KHANDUJA, S. K.—KUMAR, M.: A generalization of Dedekind criterion, Comm. Algebra 35 (2007), 1479–1486.10.1080/00927870601168897
  8. [8] MANJRA, S.: A note on non-Robba p-adic differential equations, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), no. 3, 40–43.
  9. [9] MANJRA, S.—REMMAL, S. E.: Equations diffĂ©rentielles p-adiques et SĂ©ries Gevrey arithmĂ©tiques, Math. Ann. 334 (2006), 37–64.10.1007/s00208-005-0696-5
  10. [10] MANJRA, S.: Arithmetic differential equations and E-functions, Illinois J. Math. 49 (Winter 2005), no. 4, 1061–1092. DOI: 10.1215/ijm/1258138127.10.1215/ijm/1258138127
  11. [11] KEDLAYA, K. S.: p-adic Differential Equations, Cambridge University Press, New York, 2010.10.1017/CBO9780511750922
  12. [12] BOURBAKI, N.: Algébre Commutative, Chapitres 5 à 7. Springer-Verlag, Berlin, Heidelberg, 2006.
  13. [13] ORE, O.: Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99 (1928), 84–117.10.1007/BF01459087
  14. [14] MURTY, M. RAM: Introduction to p-adic Analytic Number Theory. AMS/IP Stud. Adv. Math. Vol. 27. American Mathematical Society (AMS), Providence, RI: International Press, Cambridge, MA, 2002. https://doi.org/10.1090/amsip/02710.1090/amsip/027
DOI: https://doi.org/10.2478/tmmp-2023-0007 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 87 - 102
Submitted on: Nov 11, 2022
Published on: Mar 7, 2023
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Mohamed Faris, Lhoussain El Fadil, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.