Have a personal or library account? Click to login
A Generalization of Eisenstein-Schönemann’s Irreducibility Criterion Cover

A Generalization of Eisenstein-Schönemann’s Irreducibility Criterion

Open Access
|Mar 2023

References

  1. [1] BROWN, R.: Roots of generalized Schönemann polynomials in Henselian extension fields, Indian J. Pure Appl. Math. 39 (2008), no. 5, 403–410.
  2. [2] COHEN, D.—MOVAHHEDI, A.—SALINIER, A.: , Factorization over local fields and the irreducibility of generalized difference polynomials,Mathematika, 47 (2000), 173–196.10.1112/S0025579300015801
  3. [3] DUMAS, G.: Sur quelques cas d’irréductibilité des polynômes à coeffcients rationnels, J. Math. Pures Appl. 6 (1906), 191–258.
  4. [4] DEAJIM, A.—EL FADIL, L.—NAJIM, A.: On a theorem of Dedekind (submitted).
  5. [5] EISENSTEIN, G.: Über die Irreduztibilit¨at und einige andere Eigenschaften der Gleichungen, von welcher die Theilung der ganzen Lemniscate abh¨angt, J. reine angew. Math. 39 (1850), 160–179.
  6. [6]ELFADIL,L.: On Newton polygons techniques and factorization of polynomial over Henselian valued fields,J.of Algebra and its Appl. 19 (2020), DOI: S0219498820501881.10.1142/S0219498820501881
  7. [7] GUARDIA, J.—MONTES, J.—NART, E.: Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. 364 (2012), no. 1, 361–416.
  8. [8] HENSEL, K.: Untersuchung der Fundamentalgleichung einer Gattung für eine reelle Primzahl als Modul und Bestimmung der Theiler ihrer Discriminante,J. Reine Angew. Math. 113 (1894), 61–83.
  9. [9] JAKHAR, A.: On the factors of a polynomial, Bull. London Math. Soc. 52 (2020) 158–160.10.1112/blms.12315
  10. [10] MURTY, M. R.: Prime numbers and irreducible polynomials, Amer. Math. Monthly 109 (2002), 452–458.10.1080/00029890.2002.11919872
  11. [11] KHANDUJA, S. K.—SAHA, J.: On a generalization of Eisenstein’s irreducibility criterion,Mathematika 44 (1997), 37–41.10.1112/S0025579300011931
  12. [12] MACLANE, S.: A construction for absolute values in polynomial rings,Trans.Amer. Math. Soc. 40 (1936), 363–395.10.1090/S0002-9947-1936-1501879-8
  13. [13] NEUKIRCH, J.: Algebraic Number Theory. Springer-Verlag, Berlin, 1999.10.1007/978-3-662-03983-0
  14. [14] ORE, O.: Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99 (1928), 84–117.10.1007/BF01459087
DOI: https://doi.org/10.2478/tmmp-2023-0005 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 51 - 60
Submitted on: Nov 12, 2022
Published on: Mar 7, 2023
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Lhoussain El Fadil, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.