Have a personal or library account? Click to login
The Generalized Shifts and Rational Numbers Cover
By: Symon Serbenyuk  
Open Access
|Feb 2023

References

  1. [1] CANTOR, G.: Über die einfachen Zahlensysteme, Zeit für. Math. Phys. 14 (1869), 121–128.
  2. [2] DIANANDA, P. H.—OPPENHEIM, A.: Criteria for irrationality of certain classes of numbers II, Amer. Math. Monthly 62 (1955), no. 4, 222–225.10.1080/00029890.1955.11988618
  3. [3] ERDŐS, P.—STRAUS, E. G.: On the irrationality of certain series, Pacific J. Math. 55 (1974), no. 1, 85–92.10.2140/pjm.1974.55.85
  4. [4] GALAMBOS, J.: Representations of Real Numbers by Infinite Series. Lecture Notes in Math. Vol. 502, Springer-Verlag, Berlin, 1976.10.1007/BFb0081642
  5. [5] HANČL, J.: A note to the rationality of infinite series I, Acta Math. Inform. Univ. Ostraviensis 5 (1997), no. 1, 5–11.
  6. [6] HANČL, J.—RUCKI, P.: A note to the transcendence of special infinite series, Math. Slovaca 56 (2006), no. 4, 409–414.
  7. [7] HANČL, J.—TIJDEMAN, R.: On the irrationality of Cantor series, J. Reine Angew. Math. 571 (2004), 145–158.10.1515/crll.2004.038
  8. [8] KUHAPATANAKUL, P.—LAOHAKOSOL, V.: Irrationality of some series with rational terms, Kasetsart J. (Nat. Sci.) 35 (2001), 205–209.
  9. [9] OPPENHEIM, A.: Criteria for irrationality of certain classes of numbers, Amer. Math. Monthly 61 (1954), no. 4, 235–241.10.1080/00029890.1954.11988450
  10. [10] SERBENYUK, S.: On some generalizations of real numbers representations, arXiv preprint arXiv:1602.07929 (2016). (In Ukrainian)
  11. [11] SERBENYUK, S.: Cantor series and rational numbers, arXiv preprint arXiv:1702.00471 (2017), available at https://arxiv.org/pdf/1702.00471.pdf
  12. [12] SERBENYUK, S.: Cantor series expansions of rational numbers, arXiv preprint arXiv:1706.03124 (2017), available at https://www.researchgate.net/publication/317099134
  13. [13] SERBENYUK, S.: Representation of real numbers by the alternating Cantor series, Integers, 17 (2017), paper no. A15, 27 pp.
  14. [14] SERBENYUK, S.: A note on expansions of rational numbers by certain series, Tatra Mt. Math. Publ. 77 (2020), 53–58, doi: 10.2478/tmmp-2020-0032, arXiv:1904.07264.
  15. [15] SERBENYUK, S.: Rational numbers defined in terms of certain generalized series, Acta Math. Hungar. 164 (2021), 580–592, https://doi.org/10.1007/s10474-021-01163-510.1007/s10474-021-01163-5
  16. [16] SERBENYUK, S.: Systems of functional equations and generalizations of certain functions, Aequationes Math. 95 (2021), no. 5, 801–820, https://doi.org/10.1007/s00010-021-00840-810.1007/s00010-021-00840-8
  17. [17] TIJDEMAN, R.—YUAN, P.: On the rationality of Cantor and Ahmes series, Indag. Math. (N.S.) 13 (2002), no. 3, 407–418.10.1016/S0019-3577(02)80018-0
DOI: https://doi.org/10.2478/tmmp-2022-0015 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 9 - 16
Submitted on: Nov 7, 2021
Published on: Feb 15, 2023
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Symon Serbenyuk, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.