[4] FATHIMA, D.—M ALBAIDANI, M.—GANIE, A. H—AKHTER, A.: New structure of Fibonacci numbers using concept of Δ-operator, J. Math. Comput. Sci. 26 (2022), no. 2, 101–112.
[5] GANIE, A. H: Sequences of Cesàro type using Lacunary notion,Int.Journal Nonlinear Anal. Appl. 2022 Paper: ID IJNAA-2008-2242(R1), 7 pp. http://dx.doi.org/10.22075/ijnaa.2021.21237.2242
[7] GANIE, A. H—SHEIKH, N. A.: On some new sequence space of non-absolute type and matrix transformations, J. Egyptain Math. Soc. 21( 2013), 34–40.10.1016/j.joems.2013.01.006
[9] GANIE, A. H.—TRIPATHY, B. C.—SHEIKH, N. A.—SEN, M.: Invariant means and matrix transformations, Functional Analysis: Theory, Methods and Appl. 2 (2016), 28–33. http://vonneumann-publishing.com/fatma/articles-50-invariant-means-and-matrix-ransformations
[10] DE MALAFOSSE, B.—MALKOWSKY, E.: On the measure of noncompactness of linear operators in spaces of strongly α-summable and bounded sequences,Period. Math. Hungar. 55 (2007), no. 2, 129–148.
[11] DE MALAFOSSE, B.—V. RAKOČEVIĆ, V.: Applications of mesure of noncompactness in operators on the spaces sα,sα0, sα(c) ℓα(p), J. Math. Anal. Appl. 323 (2006), no. 1, 131–145.
[13] DJOLOVIĆ, I.: On the space of bounded Euler difference sequences and some classes of compact operators, Appl. Math. Comput. 182 (2006), 1803–1811.
[15] DJOLOVIĆ, I.—MALKOWSKY, E.: Matrix transformations and compact operators on some new mth order difference sequence spaces, Appl. Math. Comput. 198 (2008), 700–714.
[17] KARA, E. E.—BAS¸ARIR, M.: On some Euler B(m) difference sequence spaces and compact operators, J. Math. Anal. Appl. 379 (2011), 499–511.10.1016/j.jmaa.2011.01.028
[19] KIRIS¸ÇI, M.—BAS¸AR, F.:, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl. 60 (2010), 1299–1309.10.1016/j.camwa.2010.06.010
[21] MALKOWSKY, E.—PARASHAR, S. D.: Matrix transformations in scpace of bounded and convergent difference sequence of order m,Analysis 17 (1997), 87–97.10.1524/anly.1997.17.1.87
[22] MALKOWSKY, E.—RAKOČEVIĆ, V.: An introduction into the theory of sequence spaces and measure of noncompactness, Zb. Rad, Belgrade 9 (2000), no. 17, 143–234.
[24] MALKOWSKY, E.—RAKOČEVIĆ, V.: The measure of noncompactness of linear operators between certain sequence spaces, Acta Sci. Math. (Szeged), 64 (1998), 151–171.
[27] MURSALEEN, M.: Application of measure of noncompactness to infinite system of differential equations. Canadian Math. Bull. 2011, Paper: doi:10.4153/CMB-2011–170–7.10.4153/CMB-2011-170-7
[29] MURSALEEN, M.—NOMAN, A. K.: Applications of the Hausdorff measure of noncompactness in some sequence spaces of weighted means, Comput. Math. Appl. 60 (2010), no. 5, 245–1258.
[31] MURSALEEN, M.—NOMAN, A. K.: Compactness of matrix operators on some new difference sequence spaces, Linear Algebra Appl. Paper: doi: 10.1016/j.laa.2011.06.014.
[32] MURSALEEN, M.—NOMAN, A. K.: On some new difference sequence spaces of non-absolute type, Math. Comput. Modelling 52 (2010), 603–617.10.1016/j.mcm.2010.04.006
[33] OINAROV R.—TEMIRKHANOVA, A.: Boundedness and compactness of a class of matrix operators in weighted sequence spaces J. Math. Inequal. 2 (2008), no. 4, 555–570.
[39] SHEIKH, N. A.—GANIE, A. H.: A new type of sequence space of non-absolute type and matrix transformation, WSEAS Transaction of Math. 8 (2013), no. 12, 852–859.
[40] SHEIKH, N. A.—GANIE, A. H.: A new paranormed sequence space and some matrix transformation, Acta Math. Acad. Paedagogicae Nyiregyháziensis 28 (2012), 47–58.
[41] SHEIKH, N. A.— JALAL, T.—GANIE, A. H.: New type of sequence spaces of non-absolute type and some matrix transformations, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 29 (2013), 51–66.
[42] TRIPATHY, B. C.—ESI, A.—TRIPATHY, B. K.: On a new type of generalized difference Ce¸saro sequence spaces, Soochow J. Math. 31 (2005), no. 3, 333–340.