Have a personal or library account? Click to login

Integrability and Non-Existence of Periodic Orbits for a Class of Kolmogorov Systems

Open Access
|Nov 2022

Abstract

In this article, we study the integrability and the non-existence of periodic orbits for the planar Kolmogorov differential systems of the form x˙=x(Rn-1(x,y)+Pn(x,y)+Sn+1(x,y)),y˙=y(Rn-1(x,y)+Qn(x,y)+Sn+1(x,y)), \matrix{ {\dot x = x\left( {{R_{n - 1}}\left( {x,y} \right) + {P_n}\left( {x,y} \right) + {S_{n + 1}}\left( {x,y} \right)} \right),} \hfill \cr {\dot y = y\left( {{R_{n - 1}}\left( {x,y} \right) + {Q_n}\left( {x,y} \right) + {S_{n + 1}}\left( {x,y} \right)} \right),} \hfill \cr } where n is a positive integer, Rn−1, Pn, Qn and Sn+1 are homogeneous polynomials of degree n − 1, n, n and n + 1, respectively. Applications of Kolmogorov systems can be found particularly in modeling population dynamics in biology and ecology.

DOI: https://doi.org/10.2478/tmmp-2022-0011 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 145 - 154
Submitted on: Jul 18, 2022
Published on: Nov 29, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 Sarbast Hussein, Tayeb Salhi, Bo Huang, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.