Have a personal or library account? Click to login

Global Phase Portraits of Quadratic Polynomial Differential Systems Having as Solution Some Classical Planar Algebraic Curves of Degree 6

Open Access
|Nov 2022

References

  1. [1]ÁLVAREZ, M. J. A.—FERRAGUT, A.— JARQUE, X.: A survey on the blow up technique, Int. J. Bifur.Chaos,Appl.Sci,Engrg. 21 (2011), no. 11, 3103–3118.
  2. [2] ARTÉS, J. C.—LLIBRE, J.—SCHLOMIUK, D.—VULPE, N.: Geometric Configurations of Singularities of Planar Polynomial Differential Systems—A Global Classification In The Quadratic Case.Birkhäuser/Springer, Cham, 2021.10.1007/978-3-030-50570-7
  3. [3] BELFAR, A.—BENTERKI, R.: Qualitative dynamics of five quadratic polynomial differential systems exhibiting five classical cubic algebraic curves, Rend. Circ.Mat.Palermo II. Ser. 2 (2021), 1–28.
  4. [4] BELFAR, A.—BENTERKI, R.: Qualitative dynamics of quadratic systems exhibiting reducible invariant algebraic curve of degree 3,Palest. J. Math. 11 (2022), 1–12.
  5. [5] BENTERKI, R.—BELFAR, A.: Global phase portraits of two classes of quadratic differential systems exhibiting as solutions two cubic algebraic curves, (2022), (submitted).10.2478/tmmp-2022-0010
  6. [6] BENTERKI, R.—LLIBRE, J.: Phase portraits of quadratic polynomial differential systems having as solution some classical planar algebraic curves of degree 4, Electronic J. Differential Equations 2019 (2019), no. 15, 1–25.
  7. [7] BENTERKI, R.—LLIBRE, J.: The centers and their cyclicity for a class of polynomial differential systems of degree 7, J. Comput. Appl. Math. 368 (2020), Article ID 112456, 16 p.
  8. [8] COPPEL, W. A.: A survey of quadratic systems, J. Differential Equations 2 (1966), 293–304.10.1016/0022-0396(66)90070-2
  9. [9] DUMORTIER, F.—LLIBRE, J.—ARTÉS, J. C.: Qualitative Theory of Planar Differential Systems. Universitext, Spring-Verlag, Berlin, 2006.
  10. [10] FULTON, W.: Algebraic Curves: An Introduction to Algebraic Geometry.In: Mathematics Lecture Note Series. Benjamin Cummings Inc, 1969. Reprinted by Addison-Wesley Publishing Company Inc, 1989.
  11. [11] GARĆIA, I. A.—LLIBRE, J.: Classical Planar Algebraic Curves Realizable by Quadratic Polynomial Differential Systems, Int. J. Bifurfurcation Chaos Appl. Sci. Eng. 27 (2017), no.9, Article ID 1750141, 12 p.
  12. [12] MARKUS, L.: Global structure of ordinary differential equations in the plane. Trans. Amer. Math Soc. 76 (1954), 127–148.
  13. [13] NEUMANN, D. A.: Classification of continuous flows on 2–manifolds, Proc. Amer. Math. Soc. 48 (1975), 73–81.10.1090/S0002-9939-1975-0356138-6
  14. [14] PEIXOTO,M.M.: On the classification of flows on 2-manifolds In: Proceedings of the Symposium held at the University of Bahia, Dynamical Systems. Acad. Press, New York, 1973, pp. 389–419,10.1016/B978-0-12-550350-1.50033-3
  15. [15] REYN, J. W.: Phase portraits of planar quadratic systems. Mathematics and its Applications Vol. 583. Springer, New York, 2007.
  16. [16] YE, Y. Q ET AL.: Theory of Limit Cycles. Translations of Mathematical Monographs Vol. 66, Amer. Math. Soc., Providence, RI, 1986.
DOI: https://doi.org/10.2478/tmmp-2022-0010 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 129 - 144
Submitted on: Jun 8, 2022
Published on: Nov 29, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2022 Rebiha Benterki, Ahlam Belfar, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.