[2] ABBAS, S.—BENCHOHRA, M.—GRAEF J. R.—HENDERSON, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability. De Gruyter, Berlin, 2018.10.1515/9783110553819
[3] ABBAS, S.—BENCHOHRA, M.—HAMIDI, N.: Successive approximations for the Darboux problem for implicit partial differential equations, PanAmer. Math. J. 28 (2018), no. 3, 1–10.
[9] BALEANU, D.—MOUSALOU, A.—REZAPOUR, S.: On the existence of solutions for some infinite coefficient-symmetric Caputo-Fabrizio fractional integro-differential equations, Bound. Value Probl. 2017 (2017), art. no. 145, 1–9.10.1186/s13661-017-0867-9
[10] BASHIRI, T.—VAEZPOUR, M.—NIETO, J. J.: Approximating solution of Fabrizio-Caputo Volterra’s model for population growth in a closed system by homotopy analysis method, J. Funct. Spaces, 2018 (2018), https://doi.org/10.1155/2018/315250210.1155/2018/3152502
[12] BROWDER, F.: On the convergence of successive approximations for nonlinear functional equations, Indag. Math. 30 (1968), 27–35.10.1016/S1385-7258(68)50004-0
[14] CHEN, H. Y.: Successive approximations for solutions of functional integral equations, J. Math. Anal. Appl. 80 (1981), 19–30.10.1016/0022-247X(81)90087-1
[15] CZ LAPIŃSKI, T.: Global convergence of successive approximations of the Darboux problem for partial functional differential equations with infinite delay, Opuscula Math. 34 (2014), no. 2, 327–338.10.7494/OpMath.2014.34.2.327
[17] DOKUYUCU, M. A.—CELIK, E.—BULUT, H.—BASKONUS, H. M.: Cancer treatment model with the Caputo-Fabrizio fractional derivative,Eur.Phys. J. Plus 133 (2018), no. 3, 1–6.10.1140/epjp/i2018-11950-y
[18] FAINA, L.: The generic property of global convergence of successive approximations for functional differential equations with infinite delay, Commun. Appl. Anal. 3 (1999), 219–234.
[22] KILBAS, A. A.—SRIVASTAVA, H. M.—TRUJILLO, J. J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B. V., Amsterdam, 2006.
[23] LIU, Y.—FAN, E.—YIN, B.—LI, H.: Fast algorithm based on the novel approximation formula for the Caputo-Fabrizio fractional derivative.AIMS Math. 5 (2020), 1729–1744.10.3934/math.2020117
[25] MAINARDI, F.: Fractional Calculus and Waves in Linear Viscoelasticity, an Introduction to Mathematical Model. Imperial College Press, World Scientific Publishing, London, 2010.10.1142/p614
[27] SAMKO, S. G.—KILBAS, A. A.—MARICHEV, O. I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, Amsterdam, 1987 (transl. from the Russian).
[29] TARASOV, V. E. : Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media.In: Nonlinear Physical Science. Springer, Heidelberg; Higher Education Press, Beijing, 2010.10.1007/978-3-642-14003-7
[30] TOLEDO-HENRNANDEZ, R.— RICO-RAMIREZ, V.— IGLESIAS-SILVA, G. A.— DIWEKAR, U. M.: A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions,Chemical Engineering Science, 117 (2014), 217–228; http:dx.doi.org/10.1016/j.ces.2014.06.03410.1016/j.ces.2014.06.034
[31] TOLEDO-HENRNANDEZ, R.—RICO-RAMIREZ, V.— RICO-MARTINEZ, R.— HERNANDZO-CASTRO, S.—DIWEKAR, U. M.: A fractional calculus approach to the dynamic optimization of biological reactive systems. Part II: Numerical solution to fractional optimum control problems, Chemical Engineering Science, 117 (2014), 239–247; http://dx.doi.org/10.1016/j.ces.2014.06.033.810.1016/j.ces.2014.06.033
[32] ZHOU, Y.—WANG, J. R.— ZHANG, L.: Basic Theory of Fractional Differential Equations (2nd edition). World Scientific Publishing Co. Pte. Ltd., Hackensack, N. J., 2017.10.1142/10238