[1] BELKINA, E. S.âPLATONOV, S. S.: Equivalence of K-functionals and modulus of smoothness constructed by generalized Dunkl translations, (English. Russian original) Russ. Math. 52 (2008) no. 8, 3â15. (In Russian).10.3103/S1066369X0808001X
[2] RAKHIMI, L.âDAHER, R.: Equivalence of K-functionals and modulus of smoothness for Laguerre type operator, J. Pseudo-Differ. Oper. Appl. 12 (2021), no. 4, Paper no. 53, 15 pp.
[3] EL OUADIH, S.âDAHER, R.âEL HAMMA, M.: Moduli of smoothness and K-functionals in L2(âq+) â space with power weight,Anal. Math. 45 (2019), no. 3, 491â503. DOI: 10.1007/s10476-019-0830-3.
[4] EL HAMMA, M.âDAHER, R.: Equivalence of K-functionals and modulus of smoothness constructed by generalized Jacobi transform, Integral Transforms Spec. Funct. 30 (2019), no. 12, 1018â1024. DOI: 10.1080/10652469.2019.1635127
[5] EL OUADIH, S.âDAHER, R.: Equivalence of K-functionals and modulus of smoothness generated by a Bessel type operator on the interval [0, 1], J. Pseudo-Differ. Oper. Appl. 9 (2018), no. 4, 933â951.
[15] PEETRE, J.: A Theory of Interpolation of Normed Spaces.In: Notas de MatemĂĄtica, Vol. 39, Instituto de MatemĂĄtica Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968.
[16] TIMAN, A. F.: Theory of Approximation of Functions of a Real Variable. Fizmatgiz Moscow, 1960. (In Russian); [Translated by J. Berry; J. Cossar ed.) In: Book International Series of Monographs in Pure and Applied Mathematics, Vol. 34, A Pergamon Press, The Macmillan Company, New York, 1963.]