Have a personal or library account? Click to login

Modulus of Smoothness and K-Functionals Constructed by Generalized Laguerre-Bessel Operator

By:
Larbi Rakhimi and  Radouan Daher  
Open Access
|Nov 2022

References

  1. [1] BELKINA, E. S.—PLATONOV, S. S.: Equivalence of K-functionals and modulus of smoothness constructed by generalized Dunkl translations, (English. Russian original) Russ. Math. 52 (2008) no. 8, 3–15. (In Russian).10.3103/S1066369X0808001X
  2. [2] RAKHIMI, L.—DAHER, R.: Equivalence of K-functionals and modulus of smoothness for Laguerre type operator, J. Pseudo-Differ. Oper. Appl. 12 (2021), no. 4, Paper no. 53, 15 pp.
  3. [3] EL OUADIH, S.—DAHER, R.—EL HAMMA, M.: Moduli of smoothness and K-functionals in L2(ℝq+) − space with power weight,Anal. Math. 45 (2019), no. 3, 491–503. DOI: 10.1007/s10476-019-0830-3.
  4. [4] EL HAMMA, M.—DAHER, R.: Equivalence of K-functionals and modulus of smoothness constructed by generalized Jacobi transform, Integral Transforms Spec. Funct. 30 (2019), no. 12, 1018–1024. DOI: 10.1080/10652469.2019.1635127
  5. [5] EL OUADIH, S.—DAHER, R.: Equivalence of K-functionals and modulus of smoothness generated by a Bessel type operator on the interval [0, 1], J. Pseudo-Differ. Oper. Appl. 9 (2018), no. 4, 933–951.
  6. [6] JEBBARI, E.— SIFI, M.—SOLTANI, F.: Laguerre-Bessel wavelet transform,Glob. J. Pure Appl. Math. 1 (2005), no. 1, 13–26.
  7. [7] KORTAS, H.—SIFI, M.: LĂ©vy-Khintchine formula and dual convolution emigroups associated with Laguerre and Bessel functions, Potential Anal. 15 (2001), 43–58.10.1023/A:1011267200317
  8. [8] HAMEM, S.—KAMOUN, L.: Uncertainty principle inequalities related to Laguerre-Bessel transform, Math. Inequal. Appl. 16 (2013), no. 2, 375–387.
  9. [9] TITCHMARSH, E. C.: Introduction to the Theory of Fourier Integral.Oxford University Press, Amen House, London. 1948.
  10. [10] NEGZAOUI, S.: Lipschitz Conditions in Laguerre Hypergroup, Mediterr. J. Math. 14 (2017), no. 5, Paper no. 191, 12 pp.
  11. [11] STEMPAK, K.: Mean summability methods for Laguerre series, Trans. Amer. Math. Soc. 322 (1990), no. 2, 671–690.
  12. [12] BERENS, H.—BUTZER, P. L.: Semigroups of Operators and Approximation. In: Grundlehren Math. Wiss. Vol. 145, Springer-Verlag, Berlin, 1967.
  13. [13] NIKOL’SKII, S. M.: A generalization ofan inequality ofS.N.Bernstein, Dokl. Akad. Nauk SSSR, 60 (1948), 1507–1510. (In Russian)
  14. [14] NIKOL’SKII, S. M.: Approximation of Functions in Several Variables and Embedding Theorems. Nauka Moscow, 1977. (In Russian).
  15. [15] PEETRE, J.: A Theory of Interpolation of Normed Spaces.In: Notas de MatemĂĄtica, Vol. 39, Instituto de MatemĂĄtica Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968.
  16. [16] TIMAN, A. F.: Theory of Approximation of Functions of a Real Variable. Fizmatgiz Moscow, 1960. (In Russian); [Translated by J. Berry; J. Cossar ed.) In: Book International Series of Monographs in Pure and Applied Mathematics, Vol. 34, A Pergamon Press, The Macmillan Company, New York, 1963.]
  17. [17] WATSON, G. N.: A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1996.
DOI: https://doi.org/10.2478/tmmp-2022-0008 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 107 - 116
Submitted on: Jun 25, 2022
Published on: Nov 29, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2022 Larbi Rakhimi, Radouan Daher, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.