Have a personal or library account? Click to login

Some Inequalities Involving Interpolations Between Arithmetic and Geometric Mean

By:
Open Access
|Nov 2022

References

  1. [1] ANDO, T.: Topics on operator inequalities, Lecture Note, Sapporo, (1978).
  2. [2] BHATIA, R.: Interpolating the arithmetic-geometric mean inequality and its operator version, Linear Algebra Appl. 413 (2006), 355–363.10.1016/j.laa.2005.03.005
  3. [3] KUBO, F.—ANDO, T.: Means of positive linear operators, Math. Ann. 246 (1980), 205–224.10.1007/BF01371042
  4. [4] KITTANEH, F.—MANASRAH, Y.: Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl. 361 (2010), 262–269.10.1016/j.jmaa.2009.08.059
  5. [5] KITTANEH, F.—MANASRAH, Y.: Reversed Young and Heinz inequalities for matrices, Linear Multilinear Algebra 59 (2011), no. 9, 1031–1037.
  6. [6] KITTANEH, F.—MOSLEHIAN, M. S.—SABABHEH, M.: Quadratic interpolation of the Heinz means, Math. Inequal. Appl. 21 (2018), no. 3, 739–757.
  7. [7] MARSHALL, A. W.—OLKIN, I.—ARNOLD, B. C.: : Inequalities: Theory of Majorization and its Application. Second edition. Springer Series in Statistics. Springer, New York, 2011.10.1007/978-0-387-68276-1
  8. [8] PUSZ, W.—WORONOWICZ, S. L.: Functional calculus for sesquilinear forms and the purification map,Rep. Math. Phys. 8 (1975), 159–170.10.1016/0034-4877(75)90061-0
  9. [9] SABABHEH, M.: Means refinements via convexity, Mediterr. J. Math. 14 (2017) no. 3, paper no. 25, 16 pp.10.1007/s00009-017-0924-8
  10. [10] SABABHEH, M.—FURUICHI, S.—HEYDARBEYGI, Z.—MORADI, H. R.: On the arithemetic-geometric mean inequality, J. Math. Inequal. 15 (2021), no. 3, 1255–1266.
  11. [11] SABABHEH, M.—MORADI, H. R.: Radical convex functions, Mediterr. J. Math. 18 (2021), no. 4, paper no. 137, 15. pp.
  12. [12] YANG, C.—REN, Y.: : Some results of Heron mean and Young’s inequalities,J. Inequal. Appl. 2018 (2018), paper no, 172, 9 pp.
DOI: https://doi.org/10.2478/tmmp-2022-0007 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 93 - 106
Submitted on: May 27, 2022
Published on: Nov 29, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2022 Hongliang Zuo, Yuwei Li, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.