[7] DOUZI, Z. ET AL.: Another example of the mutual singularity of multifractal measures, Proyecciones 40 (2021), 17–33.10.22199/issn.0717-6279-2021-01-0002
[12] HUA, S.—RAO, H.—WEN, Z. ET AL.: On the structures and dimensions of Moran sets, Sci. China Ser. A-Math. 43 (2000), no. 8, 836–852. DOI:10.1007/BF02884183.10.1007/BF02884183
[13] HUANG, L.—LIU, Q.—WANG, G.: Multifractal analysis of Bernoulli measures on a class of homogeneous Cantor sets,J.Math. Anal.Appl. 491 (2020), no. 2, 124362, 15 pp.10.1016/j.jmaa.2020.124362
[18] PESIN, Y. — WEISS, H.: On the Dimension of Deterministic and Random Cantor-like Sets, Symbolic Dynamics, and the Eckmann-Ruelle Conjecture, Commun. Math. Phys 182 (1996), 105–153. DOI:10.1007/BF02506387.10.1007/BF02506387
[20] ROYCHOWDHURY, M. K.—BILEL SELMI, B.: Local dimensions and quantization dimensions in dynamical systems,J.Geom. Anal. 31 (2021), 6387–6409.10.1007/s12220-020-00537-5
[21] SALEM, R.:, On some singular monotonic functions which are stricly increasing,Trans. Amer. Math. Soc. 53 (1943), 423–439.10.1090/S0002-9947-1943-0007929-6
[25] SERBENYUK, S. O.: Topological, metric and fractal properties of one set defined by using the s-adic representation, In: XIV International Scientific Kravchuk Conference: Conference materials II, Kyiv: National Technical University of Ukraine “KPI” 2012. p. 220. (In Ukrainian) https://www.researchgate.net/publication/311665455
[26] SERBENYUK, S. O.: Topological, metric and fractal properties of sets of class generated by one set with using the s-adic representation, In: International Conference Dynamical Systems and their Applications Abstracts, Kyiv: Institute of Mathematics of NAS of Ukraine, 2012. p. 42. (In Ukrainian) https://www.researchgate.net/publication/311415778
[27] SERBENYUK, S. O.: Topological, metric and fractal properties of the set with parameter, that the set defined by s-adic representation of numbers, In: International Conference Modern Stochastics: Theory and Applications III, (Dedicated to 100th anniversary of B. V. Gnedenko and 80th anniversary of M. I. Yadrenko:) Abstracts, Kyiv: Taras Shevchenko National University of Kyiv, 2012. p. 13, https://www.researchgate.net/publication/311415501
[28] SERBENYUK, S. O.: Topological, metric, and fractal properties of one set of real numbers such that it defined in terms of the s-adic representation, Naukovyi Chasopys NPU im. M. P. Dragomanova. Seria 1. Phizyko-matematychni Nauky, [Trans. Natl. Pedagog. Mykhailo Dragomanov University. Ser. 1. Phys. Math.] 11 (2010), 241–250. (In Ukrainian) https://www.researchgate.net/publication/292606441
[29] SERBENYUK, S. O.: Topological, metric properties and using one generalizad set determined by the s-adic representation with a parameter, Naukovyi Chasopys NPU im. M. P. Dragomanova. Seria 1Phizyko-matematychni Nauky [Trans. Natl. Pedagog. Mykhailo Dragomanov University. Ser. 1. Phys. Math.] 12 (2011), 66–75. (In Ukrainian) https://www.researchgate.net/publication/292970196
[30] SERBENYUK, S. O.: On some sets of real numbers such that defined by nega-s-adic and Cantor nega-s-adic representations, Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. 1. Phys. Math. 15 (2013), 168–187. (In Ukrainian) https://www.researchgate.net/publication/292970280
[34] SERBENYUK, S. O.: Functions, that defined by functional equations systems in terms of Cantor series representation of numbers, Naukovi Zapysky NaUKMA 165 (2015), 34–40. (In Ukrainian), https://www.researchgate.net/publication/292606546
[35] SERBENYUK, S. O.: Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers,J.Math. Phys. Anal. Geom. 13 (2017), no. 1, 57–81.10.15407/mag13.01.057
[36] SERBENYUK, S. O.: Non-differentiable functions defined in terms of classical representations of real numbers,J.Math. Phys.Anal. Geom. 14 (2018), no. 2, 197–213.10.15407/mag14.02.197
[41] SERBENYUK, S.: Nega- ˜Q-representation as a generalization of certain alternating representations of real numbers, Bulletin of the Taras Shevchenko National University of Kyiv Mathematics and Mechanics 35 (2016), no. 1, 32–39. (In Ukrainian) https://www.researchgate.net/publication/308273000