Have a personal or library account? Click to login
Solving Nonlinear Volterra-Fredholm Integral Equations using an Accurate Spectral Collocation Method Cover

Solving Nonlinear Volterra-Fredholm Integral Equations using an Accurate Spectral Collocation Method

Open Access
|Jan 2022

References

  1. [1] AMIRI, S.—HAJIPOUR, M.—BALEANU, D.: A spectral collocation method with piecewise trigonometric basis functions for nonlinear Volterra–Fredholm integral equations, Appl. Math. Comput. 370 (2020), 124915.10.1016/j.amc.2019.124915
  2. [2] ASKEY, R.: Orthogonal Polynomials and Special Functions. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1975.10.1137/1.9781611970470
  3. [3] BABOLIAN, E.—FATTAHZADEH, F.—GOLPAR RABOKY, E.: A Chebyshev approximation for solving nonlinear integral equations of Hammerstein type, Appl. Math. Comput. 189 (2007), 641–646.10.1016/j.amc.2006.11.181
  4. [4] BABOLIAN, E.—SHAHSAVARAN, A.: Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets, J. Comput. Appl. Math. 225 (2009), 87–95.10.1016/j.cam.2008.07.003
  5. [5] BENYOUSSEF, S.—RAHMOUNE, A.: Efficient spectral-collocation methods for a class of linear Fredholm integro-differential equations on the half-line, J. Comput. Appl. Math. 377 (2020), 112894.10.1016/j.cam.2020.112894
  6. [6] CANUTO, C.—HUSSAINI, M.—QUARTERONI, A.—ZANG, T.: Orthogonal Polynomials and Special Functions. (1 edition). Springer-Verlag Berlin Heidelberg, 2006.
  7. [7] CHEN, Y.—TANG, T.: Convergence analysis of the Jacobi spectral collocation methods for Volterra integral equations with a weakly singular kernel, Math. Comp. 79 (2010), 147–167.10.1090/S0025-5718-09-02269-8
  8. [8] GUECHI, A.—RAHMOUNE, A.: Mapped Chebyshev spectral methods for solving second kind integral equations on the real line, Aust. J. Math. Anal. Appl. 14 (2017), 1–8.
  9. [9] GUO, B.-Y.—SHEN, J.—WANG, L.-L.: Generalized Jacobi polynomials/functions and their applications, Appl. Numer. Math. 59 (2009), 1011–1028.10.1016/j.apnum.2008.04.003
  10. [10] HEADLEY, V. B.: A multidimensional nonlinear gronwall inequality, J. Math. Anal. Appl. 47 (1974), 250–255.10.1016/0022-247X(74)90020-1
  11. [11] MALEKNEJAD, K.—HASHEMIZADEH, E.—BASIRAT, B.: Computational method based on Bernstein operational matrices for nonlinear Volterra–Fredholm–Hammerstein integral equations, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 52–61.10.1016/j.cnsns.2011.04.023
  12. [12] MALEKNEJAD, K.—MOLLAPOURASL, R.—SHAHABI, M.: On the solution of a nonlinear integral equation on the basis of a fixed point technique and cubic B-spline scaling functions, J. Comput. Appl. Math. 239 (2013), 346–358.10.1016/j.cam.2012.09.002
  13. [13] MARZBAN, H.—TABRIZIDOOZ, H.—RAZZAGHI, M.: A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1186–1194.10.1016/j.cnsns.2010.06.013
  14. [14] MASTROIANNI, G.—OCCORSIO, D.: Optimal systems of nodes for Lagrange interpolation on bounded intervals. A survey, J. Comput. Appl. Math. 134 (2001), 325–341.10.1016/S0377-0427(00)00557-4
  15. [15] NEVAI, P.: Mean convergence of lagrange interpolation, III, Trans. Amer. Math. Soc. 282 (1984), 669–698.10.1090/S0002-9947-1984-0732113-4
  16. [16] ORDOKHANI, Y.—RAZZAGHI, M.: Solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via a collocation method and rationalized Haar functions, Appl. Math. Lett. 21 (2008), 4–9.10.1016/j.aml.2007.02.007
  17. [17] PARAND, K.—RAD, J. A.: Numerical solution of nonlinear Volterra-Fredholm–Hammerstein integral equations via collocation method based on radial basis functions, Appl. Math. Comput. 218 (2012), 5292–5309.10.1016/j.amc.2011.11.013
  18. [18] RAGOZIN, D. L.: Polynomial approximation on compact manifolds and homogeneous spaces, Trans. Amer. Math. Soc. 150 (1970), 41–53.10.1090/S0002-9947-1970-0410210-0
  19. [19] RAHMOUNE, A.: On the numerical solution of integral equations of the second kind over infinite intervals, J. Appl. Math. Comput. 66 (2021), 129–148.10.1007/s12190-020-01428-2
  20. [20] RAHMOUNE, A.—GUECHI, A.: A rational spectral collocation method for solving Fredholm integral equations on the whole line, Int. J. Comput. Sci. Math. 13 (2021), 32–41.10.1504/IJCSM.2021.114184
  21. [21] YOUSEFI, S.—RAZZAGHI, M.: Legendre wavelets method for the nonlinear Volterra--Fredholm integral equations, Math. Comput. Simulation 70 (2005), 1–8.10.1016/j.matcom.2005.02.035
DOI: https://doi.org/10.2478/tmmp-2021-0030 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 35 - 52
Submitted on: Feb 16, 2021
Published on: Jan 1, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 Fatima Hamani, Azedine Rahmoune, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.