Have a personal or library account? Click to login
A Quintic Spline Collocation Method for Solving Time-Dependent Convection-Diffusion Problems Cover

A Quintic Spline Collocation Method for Solving Time-Dependent Convection-Diffusion Problems

Open Access
|Jan 2022

References

  1. [1] AHMED, N.—MATTHIES, G.—TOBISKA, L.—XIE, H.: Discontinuous Galerkin time stepping with local projection stabilization for transient convection-diffusion-reaction problems, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 21–22, 1747–1756,10.1016/j.cma.2011.02.003
  2. [2] BROOKS, A. N.—HUGHES, T. J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 32 (1982), 199–259.10.1016/0045-7825(82)90071-8
  3. [3] CAI, X.—CAI, D. — LU, M.: Finite volume method for time-dependent convection diffusion large Reynolds number problem. In: Second International Conference on Information and Computing Science, 2009, (ICIC ’09), pp. 360–363, doi: 10.1109/ICIC.2009.296.10.1109/ICIC.2009.296
  4. [4] CAI, X.—LIU, F.: A Reynolds uniform scheme for singularly perturbed parabolic differential equation, Anziam J. 47 (2005) (C), C 633-C 648.10.21914/anziamj.v47i0.1067
  5. [5] CLAVERO, C.—JORGE, J. C.—LISBONA, F.: Uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems, J. Comput. Appl. Math. 154 (2003), 415–429.10.1016/S0377-0427(02)00861-0
  6. [6] CLAVERO, C.—GRACIA, J. L.—STYNES, M.:, A simpler analysis of a hybrid numerical method for time-dependent convection–diffusion problems, J. Comput. Appl. Math. 235 (2011), 5240–5248.10.1016/j.cam.2011.05.025
  7. [7] CLAVERO, C.—JORGE, J. C.—LISBONA, F.—SHISHKIN, G.I.: A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection-diffusion problems. Appl. Numer. Math. 27 (1998), no. 3, 211–231.
  8. [8] CLAVERO, C.—JORGE, J. C.—LISBONA, F.: Uniformly convergent schemes for singular perturbation problems combining alternating directions and exponential fitting techniques. In: (Miller J. J.H. ed.) Applications of Advanced Computational Methods for Boundary and Interior Layers. Adv. Comput. Methods Bound. Inter. Layers, 2, Boole Press, Dublin, 1993, pp. 33–52.
  9. [9] DE BOOR, C.: A Practical Guide to Splines. In: Applied Mathematical Sciences Vol. 27, Springer-Verlag, Berlin, 1978.10.1007/978-1-4612-6333-3
  10. [10] DEB, R.—NATESAN, S.: Higher-order time accurate numerical methods for singularly perturbed parabolic partial differential equations, Int. J. Comput. Math. 86 (2009), no. 7, 1204–1214.
  11. [11] EL HAJAJI, A.—HILAL, K.—SERGHINI, A.—MERMRI, EL BEKKEY, M.: Pricing American bond options using a cubic spline collocation method. Bol. Soc. Parana. Mat, 32 (2014) no. 2, 189–208.
  12. [12] EL MERZGUIOUI, M.—EL HAJAJI, A.— HILAL, K.—CHADLI, L.S.: A numerical method for solving time-dependent convection-diffusion problems, Bol. Soc. Parana. Mat, (3) 35 (2017), no. 1, 217–228.
  13. [13] JICHUN LI: Uniform convergence of discontinuous finite element methods for singularly perturbed reaction-diffusion problems, Comput. Math. Appl. 44 (2002), no. 1–2, 231–240.
  14. [14] FRIEDMAN, A.: Partial Differential Equation of Parabolic Type. Robert E. Krieger Publishing Co., Huntington, NY, 1983.
  15. [15] JICHUN LI—NAVON, I. M.: Uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems: convection-diffusion type, Comput. Methods Appl. Mech. Engrg. 162 (1998), no. 1–4, 49–78.
  16. [16] HINDMARSH, A. C.—GRESHO, P. M.—GRIFFITHS, D. F.: The stability of explicit Euler time-integration for certain finite difference approximations of the multi-dimensional advection-diffusion equation, Int. J. Numer. Meth. Fluids 4 (1984), 853–897.10.1002/fld.1650040905
  17. [17] HUGHES, T. J. R.—BROOKS, A.: A multidimensional upwind scheme with no crosswind diffusion, (T. J.R. Hughes, ed.) In: Finite Element Methods for Convection Dominated Flows, (Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York, 1979), AMD Vol. 34, Amer. Soc. Mech. Engrs. (ASME), New York, 1979, pp. 19–35.
  18. [18] KADALBAJOO, M. K.—TRIPATHI, L. P.—KUMAR, A.: A cubic B-spline collocation for a numerical solution of generalized Black-Scholes equation, Math. Comput. Modelling 55 (2012), no. 3–4, 1483–1505.
  19. [19] KUZMIN, D.: Explicit and implicit FEM-FCT algorithms with flux linearization, J. Comput. Phys. 228 (2009), no. 7, 2517–2534.
  20. [20] KUZMIN, D— MÖLLER, M.—TUREK, S.: High–resolution FEM-FCT schemes for multidimensional conservation laws, Comput. Methods Appl. Mech. Engrg. 193 (2004), 4915–4946.10.1016/j.cma.2004.05.009
  21. [21] LADYZENSKAJA, Ö. A.—SOLONNIKOV, V. A.—URAL’CEVA, N. N.: Linear and Quasilinear Equations of Parabolic Type. In: Amer. Math. Soc. Transl. Vol. 23, Providence, RI. 1968.
  22. [22] EL BEKKEY MERMRI.—SERGHINI, A.—EL HAJAJI, A.—HILAL, K. : A Cubic Spline Method for Solving a Unilateral Obstacle Problem, American J. Comput. Math. 2 (2012), no. 3, doi: 10.4236/ajcm.2012.23028.10.4236/ajcm.2012.23028
  23. [23] LI, JICHUN: High-order finite difference schemes for differential equations containing higher derivatives, Appl. Math. Comput. 171 (2005), no. 2, 1157–1176.
  24. [24] MITCHELL, A. R.—GRIFFITHS, D. F.: Upwinding by Petrov-Galerkin methods in convection-diffusion problems, J. Comput. Appl. Math. 6 (1980), 219–228.10.1016/0771-050X(80)90029-7
  25. [25] KADALBAJOO, MOHAN, K.—YADAW, A. S.: B-Spline collocation method for a two-parameter singularly perturbed convection-diffusion boundary value problems, Appl. Math. and Comput. 201 (2008), no. 1–2, 504–513.
  26. [26] NATESAN, S.—DEB, R.: A robust numerical scheme for singularly perturbed parabolic reaction diffusion problems, Neural Parallel Sci. Comput. 16 (2008), no. 3, 419–433.
  27. [27] NG-STYNES, M. J.—O’RIORDAN, E.—STYNES, M.: Numerical methods for time-dependent convection-diffusion equations, J. Comput. Appl. Math. 21 (1988), no. 3, 289–310.
  28. [28] LI, JICHUN: Convergence and superconvergence analysis of finite element methods on highly nonuniform anisotropic meshes for singularly perturbed reaction-diffusion problems, Appl. Numerical Math. 36 (2001), no. 2–3, 129–154.
  29. [29] RAMOS, J.I.: (2005) An exponentially fitted method for singularly perturbed, one-dimensional, parabolic problems, Appl. Math. Comput. 161 (2005), 513–523.10.1016/j.amc.2003.12.046
  30. [30] ROOS, H.-G.—STYNES, M.—TOBISKA, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations Convection-diffusion-reaction and Flow Problems. (2nd edition). In: Springer Series in Computational Mathematics, Vol. 24, Springer-Verlag, Berlin, 2008.
  31. [31] LI, JICHUN: Finite element analysis for a nonlinear diffusion model in image processing, Appl. Math. Lett. 15 (2002), no. 2, 197–202.
  32. [32] SURLA, K.—TEOFANOV, L.—UZELAC, Z.: A robust layer-resolving spline collocation method for a convection-diffusion problem, Appl. Math. Comput. 208 (2009), no. 1, 76–89.
  33. [33] SURLA, K.—JERKOVIĆ, V.: Some possibilities of applying spline collocations to singular perturbation problems. In: Numerical Methods and Approximation Theory, Vol. II, Univ. Novi Sad, Novi Sad, 1985. pp. 19–25.
  34. [34] YU, C. C.—HEIMICH, J. C.: Petrov-Galerkin methods for the time-dependent convective transport equation, Internat. J. Numer. Methods Engrg. 23 (1986), 883–901.10.1002/nme.1620230510
  35. [35] ZHANG, J.—YANG, D.: (2011) Parallel least-squares finite element method for time dependent convection-diffusion system, Computing 91 (2011), no. 3, 217–240.
  36. [36] ZHU, P.—XIE, Z.—ZHOU, S.: A uniformly convergent continuous–discontinuous Galerkin method for singularly perturbed problems of convection-diffusion type, Appl. Math. Comput. 217 (2011), no. 9, 4781–4790.
DOI: https://doi.org/10.2478/tmmp-2021-0029 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 15 - 34
Submitted on: Mar 3, 2020
Published on: Jan 1, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 Abdelmajid El Hajaji, Abdelhafid Serghini, Said Melliani, Jalila El Ghordaf, Khalid Hilal, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.