Have a personal or library account? Click to login
Existence of The Asymptotically Periodic Solution to the System of Nonlinear Neutral Difference Equations Cover

Existence of The Asymptotically Periodic Solution to the System of Nonlinear Neutral Difference Equations

Open Access
|Jan 2022

References

  1. [1] ADIVAR, M.— KOYUNCUOĞLU, H.C.—RAFFOUL, Y.N.: Periodic and asymptotically periodic solutions of systems of nonlinear difference equations with infinite delay, J. Difference Equ. Appl. 19 (2013), no.12, 1927–1939, doi10.1080/10236198.2013.791688.
  2. [2] AGARWAL, R.—GRACE, S.: Oscillation of higher-order nonlinear difference equations of neutral type, Appl. Math. Lett. 12 (1999), no. 8, 77–83, doi:10.1016/S0893- -9659(99)00126-3.
  3. [3] AGARWAL, R.—THANDAPANI, E. —WONG, P.: Oscillation of higher-order neutral difference equation, Appl. Math. Lett. 10 (1997), no.1, 71–78, doi:10.1016/S0893- 9659(96)00114-0.
  4. [4] ANDRUCH-SOBIŁO, A.—MIGDA, M.: On the rational recursive sequence xn+1=axn−1b+cxnxn−1 \[{x_{n + 1}} = \frac{{a{x_{n - 1}}}}{{b + c{x_n}{x_{n - 1}}}}\] , Tatra Mt. Math. Publ. 43 (2009) 1–9, doi:10.2478/v10127-009-0020-y.10.2478/v10127-009-0020-y
  5. [5] BOLAT, Y.—AKIN, Ö.: Oscillatory behaviour of a higher-order nonlinear neutral type functional difference equation with oscillating coefficients, Appl. Math. Lett. 17 (2004), no. 9, 1073–1078, doi:10.1016/S0893-9659(99)00126-3.10.1016/S0893-9659(99)00126-3
  6. [6] DIBLÍK, J.—RŮŽIČKOVÁ, M.—SCHMEIDEL, E.: Asymptotically periodic solutions of Volterra difference equations Tatra Mt. Math. Publ. (43) (2009), 51–61, doi:10.2478/v10127-009-0024-7.10.2478/v10127-009-0024-7
  7. [7] DIBLÍK, J.—RŮŽIČKOVÁ, M.—SCHMEIDEL E.: Asymptotically periodic solutions of Volterra systems of difference equations, Comput. Math. Appl.59 (2010), no. 8, 2854–2867, doi:10.1016/j.camwa.2010.01.055.10.1016/j.camwa.2010.01.055
  8. [8] DIBLÍK, J.—RŮŽIČKOVÁ, M.—SCHMEIDEL, E.—ZBASZYNIAK, M.: Weighted asymptotically periodic solutions of linear Volterra difference equations, Abstr. Appl. Anal. 2011 (ID 37098): 1–14, doi10.1155/2011/370982.
  9. [9] ELAYDI, S.: Periodicity and stability of linear Volterra difference systems, J. Math. Anal. Appl. 181 (1994), no. 2, 483–492, doi:10.1006/jmaa.1994.1037.10.1006/jmaa.1994.1037
  10. [10] FURUMOCHI, T.: Periodic solutions of Volterra difference equations and attractivity, Nonlinear Anal. (47)(2001), no. 6, 4013–4024, doi:10.1016/S0362-546X(01)00520-X.10.1016/S0362-546X(01)00520-X
  11. [11] JANKOWSKI, R.—SCHMEIDEL, E.: Stability by fixed point theory for functional differential equations, Int. J. Difference Equ. 9 (2014) no.i, 77–86.
  12. [12] JANKOWSKI, R.—SCHMEIDEL, E.: Asymptotically zero solution of a class of higher-nonlinear neutral difference equations with quasidifferences, Discrete Contin. Dyn. Syst. (B), 19 (2014), no. 8, 2691–2696, doi:10.3934/dcdsb.2014.19.2691.10.3934/dcdsb.2014.19.2691
  13. [13] KOLMANOVSKI, V.—MYSHKIS, A.: Introduction to the Theory and Applications of Functional Differential Equations. Kluwer, Dordrecht, 1999.10.1007/978-94-017-1965-0
  14. [14] KOSMALA, W.—KULENOVlĆ, M.—LADAS, G.—TEIXEIRAI, C.: On the recursive sequence yn+1=p+yn−1qyn+yn−1 \[{y_{n + 1}} = \frac{{p + {y_{n - 1}}}}{{q{y_n} + {y_{n - 1}}}}\] , J. Math. Anal. Appl. 251 (2000), no. 2, 571–586, doi:10.1006/jmaa.2000.7032.10.1006/jmaa.2000.7032
  15. [15] MIGDA, M.—ZHANG, G.: Monotone solutions of neutral difference equations of odd order, J. Difference Equ. Appl. 10 (2007), no. 7, 691–703, doi:10.1080/10236190410001702490.10.1080/10236190410001702490
  16. [16] MIGDA, M.—SCHMEIDEL, E. —ZDANOWICZ, M.: Asymptotically zero solution of a class of higher nonlinear neutral difference equations with quasidifferences, Appl. Anal. Discrete Math. 9 (2015), no. 2, 271–284, doi:10.2298/AADM150811016M.10.2298/AADM150811016M
  17. [17] MIGDA, M.—SCHMEIDEL, E.—ZDANOWICZ, M.: Boundedness of k-dimensional system of nonlinear difference equations of neutral type, Electron. J. Qual. Theory Differ. Equ. 80 (2015), 1–17, doi:10.14232/ejqtde.2015.1.80.10.14232/ejqtde.2015.1.80
  18. [18] MYSCHKIS, A.D.: Lineare Differentialgleichungen mit Nacheilendem Argument. VEB Deutscher Verlag der Wissenschaften, Berlin, 1955.
  19. [19] NALINI, S.—BANU, S. M.: New approach to periodicity of neutral type delay difference equations, Appl. Math. Sci. 48 (2015), no. 9, 2371–2379, doi:10.12988/ams.2015.53218.10.12988/ams.2015.53218
  20. [20] PARHI, N.—TRIPATHY, A.K.: Oscillation of a class of nonlinear neutral difference equations of higher order, J. Math. Anal. Appl. 284 (2003), no. 2, 756–774, 2003. doi:10.1016/S0022-247X(03)00298-1.10.1016/S0022-247X(03)00298-1
  21. [21] PHILOS, C. G.—PURNARAS, I. K.: The behaviour of the solutions of periodic linear neutral delay difference equations, J. Comput. Appl. Math. 175 (2005), no. 2, 209–230, doi:10.1016/j.cam.2004.05.020.10.1016/j.cam.2004.05.020
  22. [22] REN, J.—SIEGMUND, S.—HAN, W.: Positive Periodic Solutions for Neutral Difference Equations with Variable Delay. ResearchGate, 2014. https://www.researchgate.net/publication/259574530
  23. [23] SHARMA, S.: Metric Space. Discovery Publishing Pvt. Ltd, New Delhi, India, 1th edition, 2011.
  24. [24] THANDAPANI, E.—KARUNAKARAN, R.—AROCKIASAMY, I.: Bounded nonoscillatory solutions of neutral type difference systems, J. Qual. Theory Differ Equ. 25 (2009), 1–8, 2009. doi:10.14232/ejqtde.2009.4.25.10.14232/ejqtde.2009.4.25
  25. [25] WANG, W.—YANG, X.: Positive periodic solutions for neutral functional difference equations, Int. J. Difference Equ. 7 (2012), no. 1, 99–109.
  26. [26] WANG, Z.—SUN, J.: Asymptotic behavior of solutions of nonlinear higher-order neutral type difference equations, J. Difference Equ. Appl. 12 (2006), no. 5, 419–432, doi:10.1080/10236190500539352.10.1080/10236190500539352
  27. [27] ZHOU, Y.—HUANG, Y. Q.: Existence for nonoscillatory solutions of higher-order nonlinear neutral difference equations. J. Math. Anal. Appl. 280 (2003), no. 1, 63–76, doi:10.1016/S0022-247X(03)00017-9.10.1016/S0022-247X(03)00017-9
  28. [28] ZHOU, Y.—ZHANG, B. G.: Existence of nonoscillatory solutions of higher-order neutral delay difference equations with variable coefficients, Comput. Math. Appl. 45 (2003), no. 6, 991–1000, doi:10.1016/S0898-1221(03)00074-9.10.1016/S0898-1221(03)00074-9
DOI: https://doi.org/10.2478/tmmp-2021-0025 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 149 - 162
Submitted on: Dec 12, 2020
Published on: Jan 1, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 Ewa Schmeidel, MAŁgorzata Zdanowicz, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.