Have a personal or library account? Click to login
Properties of the Katugampola Fractional Operators Cover
Open Access
|Jan 2022

References

  1. [1] KATUGAMPOLA, U. N.: New approach to a generalized fractional integral, Appl. Math. Comput. 218 (2011), 860–865.
  2. [2] KATUGAMPOLA, U. N.: A new approach to generalized fractional derivatives, Bull. Math. Anal. App. 6 (2014), 1–15.
  3. [3] AKKURT, A.—KAÇAR, Z.—YILDIRIM, H.: Generalized fractional integral inequalities for continuous random variables, J. Probab. Stat. (2015), Paper no. 958980, 7 pp.
  4. [4] ŁUPlŃSKA, B.—ODZIJEWICZ, T.: A Lyapunov-type inequality with the Katugampola fractional derivative, Math. Methods Appl. Sci.41 (2018), no. 18, 8985–8996.
  5. [5] CHEN, H.—KATUGAMPOLA, U. N.: Hermite-Hadamard and Hermite-Hadamard-Fejér type Inequalities for Generalized Fractional Integrals, J. Math. Anal. Appl. 446 (2017), no. 2, 1274–1291.
  6. [6] ŁUPIŃSKA, B.—ODZIJEWICZ, T.—SCHMEIDEL, E.: On the solutions to a generalized fractional Cauchy problem, Appl. Anal. Discr. Math. 10 (2016), no. 2, 332–344.
  7. [7] ZENG, S.— BALEANU, D.—BAI, Y.—WU, G.: Fractional differential equations of Caputo-Katugampola type and numerical solutions, Appl. Math. Comput. 315 (2017), 549–554.
  8. [8] KATUGAMPOLA,U. N.: Mellin transforms of the generalized fractional integrals and derivatives, Appl. Math. Comput. 257 (2015), 566–580.10.1016/j.amc.2014.12.067
  9. [9] CAO, L.—KONG, H.—ZENG, S. D.: Maximum principles for time-fractional Caputo- -Katugampola diffusion equations, J. Nonlinear Sci. Appl. 10 (2017), 2257–2267.10.22436/jnsa.010.04.75
  10. [10] BALEANU, D.—WU, G. C.—ZENG, S. D.: Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations, Chaos Solitons Fractals 102 (2017), 99–105.10.1016/j.chaos.2017.02.007
  11. [11] KILBAS, A. A.—SRIVASTAVA, H. M.—TRUJILLO, J. J.: Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  12. [12] KILBAS, A. A.: Hadamard-type fractional calculus, J. Korean Math. Soc. 38(6) (2001), 1191–1204.
  13. [13] COTTONE, G.—MALINOWSKA, A. B.—ODZIJEWICZ, T.: The non-homogeneous Voigt-Katugampola model of visco-elastic material (to appear)
  14. [14] ŁUPIŃSKA, B.—ODZIJEWICZ, T.—SCHMEIDEL, E.: Some properties of generalized fractional integrals and derivatives, In: Proceedings of the International Conference of Numerical Analysis and Applied Mathematics 2016 (ICNAAM-2016) Book Series: AIP Conference Proceedings.10.1063/1.4992317
DOI: https://doi.org/10.2478/tmmp-2021-0024 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 135 - 148
Submitted on: Oct 21, 2020
Published on: Jan 1, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 Barbara Łupińska, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.