Have a personal or library account? Click to login
Controllability of Nonlocal Impulsive Functional Differential Equations with Measure of Noncompactness in Banach Spaces Cover

Controllability of Nonlocal Impulsive Functional Differential Equations with Measure of Noncompactness in Banach Spaces

Open Access
|Jan 2022

References

  1. [1] BYSZEWSKI, L.: Theorems about the existence and uniqueness of solutions of a semi-linear evolution nonlocal Cauchy problem, J. Math. Anal. Appl. 162 (1991), 494–505.10.1016/0022-247X(91)90164-U
  2. [2] FITZGIBBON, W.: Semilinear interodifferential equations in Banach space, Nonlinear Anal., Theory, Methods Appl. 4 (1980), 745–760.
  3. [3] LAKSHMIKANTHAM, V.—BAINOV, D. D.—SIMEONOV, P. S. D.: Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.10.1142/0906
  4. [4] BENCHOHRA, M.—HENDERSON, J.—NTOUYAS, S. K.: Impulsive Differential Equations and Inclusions, Hindawi Publishing, New York, 2006.10.1155/9789775945501
  5. [5] BAINOV, D. D.—SIMEONOV, P. S.: Impulsive differential equations: Periodic solutions and applications, In: Pitman Monographs and Surveys in Pure and Applied Mathematics Vol. 66. Harlow: Longman Scientific & Technical; New York, NY: John Wiley & Sons, Inc. 1993.
  6. [6] BANAS, J.—GOEBEL, K.: Measure of Noncompactness in Banach Spaces, In:Lect. Notes Pure Appl. Math. Vol. 60, Marcel Dekker, New York, 1980,
  7. [7] GUO, M.—XUE, X.—LI, R.: Controllability of impulsive evolution inclusions with nonlocal conditions, J. Optim. Theory Appl. 120 (2004), 355–374.10.1023/B:JOTA.0000015688.53162.eb
  8. [8] HERNÁNDEZ, E.— RABELO, M.—HENRIQUEZ, H. R.: Existence of solutions for impulsive partial neutral functional differential equations, J. Math. Anal. Appl. 331 (2007), 1135–1158,10.1016/j.jmaa.2006.09.043
  9. [9] AHMAD, B.—MALAR, K.—KARTHIKEYAN, K.: A study of nonlocal problems of impulsive integro differential equations with measure of noncompactness, Adv. Difference Equ. 2013 (2013), paper no. 205, 11 p.
  10. [10] JI, S.—LI, G.: A unified approach to nonlocal impulsice differential equations with measure of noncompactness, Adv. Difference Equ. 2012 (2012), paper no. 182.
  11. [11] CHANG, Y. K.: Controllability of impulsive functional differential systems with infinite delay in Banach spaces, Chaos, Solitons Fractals, 33 (2007), no. 5, 1601–1609.
  12. [12] LIU, B.: Controllability of impulsive neutral functional differential inclusions with infinite delay, Nonlinear Anal. 60 (2005), 1533–1552.10.1016/j.na.2004.11.022
  13. [13] LI, S.—LI, G.—WANG, M.: , Appl. Math. Comput. 217 (2011), 6981–6989.
  14. [14] CHALISHAJAR, D.N.: Controllability of impulsive partial neutral functional differential equations with infinite delay, Int. J. Math. Anal. 5 (2011), no. 8, 369–380.
  15. [15] CHALISHAJAR, D. N.—ACHARYA, F. S.: Controllability of neutral impulsive differential inclusions with non-local conditions, Appl. Math. 2 (2011), 1486–1496.10.4236/am.2011.212211
  16. [16] SELVI, S.—MALLIKA ARJUNAN, M.: Controllability results for impulsive differential systems with infinite delay, Appl. Math. 42 (2012), 6187–6192.
  17. [17] SELVI, S.—MALLIKA ARJUNAN, M.: Controllability results for impulsive differential systems with finite delay, J. Nonlinear Sci. Appl. 5 (2012), no. 3, 206–219.
  18. [18] CHEN, L.—LI, G.: Approximate Controllability of impulsive differential equations with nonlocal conditions, Int. J. Nonlinear Sci. 10 (2010), no. 4, 438–446.
  19. [19] JI, S.—WEN, S.: Nonlocal Cauchy problem for impulsive differential equations in Banach spaces, Int. J. Nonlinear Sci. 10 (2010), no. 1, 88–95.
  20. [20] JI, S.—LI, G.: Existence results for impulsive differential inclusions with nonlocal conditions, Comput. Math. Appl. 62 (2011), 1908–1915.10.1016/j.camwa.2011.06.034
  21. [21] LI, J.—NIETO, J. J.— SHEN, J.: Impulsive periodic boundary value problems of firstorder differential equations, J. Math. Anal. Appl. 325 (2007), 226–236.10.1016/j.jmaa.2005.04.005
  22. [22] BENCHOHRA, M.—HENDERSON, J.—NTOUYAS, S. K.: An existence result for firstorder impulsive functional differential equations in Banach spaces, Comput. Math. Appl. 42 (2001), 1303–1310.10.1016/S0898-1221(01)00241-3
  23. [23] ABADA, N.—BENCHOHRA, M.—HAMMOUCHE, H.: Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differ. Equ. 246 (2009), 3834–3863.10.1016/j.jde.2009.03.004
  24. [24] XUE, X.: Nonlocal nonlinear differential equations with a measure of noncompactness in Banach spaces, Nonlinear Anal. 70 (2009), 2593–2601.10.1016/j.na.2008.03.046
  25. [25] DONG, Q.—LI, G.: Existence of solutions for semilinear differential equations with nonlocal conditions in Banach spaces, Electron. J. Qual. Theory Differ. Equ. 2009 (2009), paper no. 47, 13 p.
  26. [26] AGARWAL, R. P.—BENCHOHRA, M.—SEBA, D.: On the application of measure of noncompactness to the existence of solutions for fractional differential equations, Results Math. 55 (2009), 221–230.10.1007/s00025-009-0434-5
  27. [27] LIANG, J.—LIU, J. H.—XIAO, T. J.: Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Math. Comput. Model. 49 (2009), 798–804.10.1016/j.mcm.2008.05.046
  28. [28] ZHU, L.—DONG, Q.—LI, G.: Impulsive differential equations with nonlocal conditions in general Banach spaces, Adv. Difference Equ. 2012 (2012), paper no. 10, 11 p.
  29. [29] SUN, J.—ZHANG, X.: The fixed point theorem of convex-power condensing operator and applications to abstract semilinear evolution equations, Acta Math. Sinica (Chin. Ser.) 48 (2005), 439–446.
  30. [30] OBUKHOVSKI, V.—ZECCA, P.: Controllability for systems governed by semilinear differential inclusions in a Banach space with a noncompact semigroup, Nonlinear Anal. 70 (2009), 3424–3436.10.1016/j.na.2008.05.009
  31. [31] LIU, L.S.—GUO, F.—WU, C.X.—WU, Y. H.: Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl. 309 (2005), 638–649.10.1016/j.jmaa.2004.10.069
  32. [32] QUINN, M. D.—CARMICHAEL, N.: An approach to non-linear control problems using fixed point methods, degree theory and pseudo inverses, Numer. Func. Anal. Optim. 7 (1984–85), 197–219.10.1080/01630568508816189
  33. [33] DUTKIEWICZ, A.: On the Kneser-Hukuhara property for an integro-differential equation in Banach spaces, Tatra Mt. Math. Publ. 48 (2011), 51–59, doi: 10.2478/v10127--011–0005–5.
  34. [34] SCHMEIDEL, E.: An application of measures of noncompactness in investigation of boundedness of solutions of second order neutral difference equations, Adv. Difference Equ. 91 (2013), 11 p, doi:10.1186/1687–1847–2013–91.10.1186/1687-1847-2013-91
DOI: https://doi.org/10.2478/tmmp-2021-0020 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 59 - 80
Submitted on: Oct 16, 2019
Published on: Jan 1, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 Dlmplekumar N. Chalishajar, Kulandhivel Karthikeyan, Dhachinamoorthi Tamizharasan, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.