Have a personal or library account? Click to login
Explicit Non Algebraic Limit Cycle for a Discontinuous Piecewise Differential Systems Separated by One Straight Line and Formed by Linear Center and Linear System Without Equilibria Cover

Explicit Non Algebraic Limit Cycle for a Discontinuous Piecewise Differential Systems Separated by One Straight Line and Formed by Linear Center and Linear System Without Equilibria

By: Aziza Berbache  
Open Access
|Jan 2022

References

  1. [1] ARTÉS, J. C.—LLIBRE, J.—MEDRADO, J. C.—TEIXEIRA, M.A.: Piecewise linear differential systems with two real saddles, Math. Comput. Simulation 95 (2014), 13–22.10.1016/j.matcom.2013.02.007
  2. [2] BERBACHE, A.: Two limit cycles for a class of discontinuous piecewise linear differential systems with two pieces, Sib. Élektron. Mat. Izv. 17 (2020), 1488–1515.10.33048/semi.2020.17.104
  3. [3] BERBACHE, A.: Two explicit non-algebraic crossing limit cycles for a family of piecewise linear systems, Mem. Differ. Equ. Math. Phys. 83 (2021), 13–29.
  4. [4] DE CARVALHO BRAGA, D. C.—MELLO, L. F.: Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane, Nonlinear Dynam. 73 (2013), 1283–1288.10.1007/s11071-013-0862-3
  5. [5] BUZZI, C.—PESSOA, C.—TORREGROSA, J.: Piecewise linear perturbations of a linear center, Discrete Contin. Dyn. Syst. 33 (2013), no. 9, 3915–3936.
  6. [6] DI BERNARDO, M.—BUDD, C. J.—CHAMPNEYS, A. R.—KOWALCZYK, P.: Piecewise-Smooth Dynamical Systems. Theory and Applications. Appl. Math. Sci. Vol. 163, Springer-Verlag, New York, NY, 2008.
  7. [7] EUZÉBIO, R. D.—LLIBRE, J.: On the number of limit cycles in discontinuous piecewise linear differential systems with two zones separated by a straight line, J. Math. Anal. Appl. 424 (2015), no. 1, 475–486.
  8. [8] FILIPPOV, A. F.: Differential equations with discontinuous right-hand sides, Mat. Sb. (N.S.), 51 (93) (1960), no.1, 99–128.
  9. [9] FREIRE, E.— PONCE, E.—RODRIGO, F.—TORRES, F.: Bifurcation sets of continuous piecewise linear systems with two zones, Int. J. Bifurcation and Chaos 8 (1998), 2073–2097.10.1142/S0218127498001728
  10. [10] FREIRE, E.—PONCE E.—TORRES, F.: Canonical Discontinuous Planar Piecewise Linear Systems, SIAM J. Appl. Dynam. Syst. 11 (2012), 181–211.10.1137/11083928X
  11. [11] FREIRE, E.—PONCE E.—TORRES, F.: A general mechanism to generate three limit cycles in planar Filippov systems with two zones, Nonlinear Dynam. 78 (2014), no. 1, 251–263.
  12. [12] HAN, M.—ZHANG, W.: On Hopf bifurcation in non-smooth planar systems, J. Differ. Equ. 248 (2010), 2399–2416.10.1016/j.jde.2009.10.002
  13. [13] HUAN, S. M.—YANG, X. S.: On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dynam. Syst. 32 (2012), 2147–2164.10.3934/dcds.2012.32.2147
  14. [14] HUAN, S. M.—YANG, X. S.: On the number of limit cycles in general planar piecewise linear systems of node-node types, J. Math. Anal. Appl. 411 (2013), 340–353.10.1016/j.jmaa.2013.08.064
  15. [15] HUAN, S. M.—YANG, X. S.: Existence of limit cycles in general planar piecewise linear systems of saddle-saddle dynamics, Nonlinear Anal. 92 (2013), 82–95.10.1016/j.na.2013.06.017
  16. [16] LI, L.: Three crossing limit cycles in planar piecewise linear systems with saddle-focus type, Electron. J. Qual. Theory Differ. Equ. 2014 (2014), paper no. 70, 14 p.
  17. [17] LLIBRE, J.—PONCE, E.: Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dynam. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 19 (2012), no. 3, 325–335.
  18. [18] LLIBRE, J.—NOVAES, D. D.—TEIXEIRA, M.A.: Maximum number of limit cycles for certain piecewise linear dynamical systems, Nonlinear Dyn. 82 (2015), no. 3, 1159–1175.
  19. [19] LLIBRE, M.—ORDÓÑEZ, M.— PONCE, E.: On the existence and uniqueness of limit cycles in planar piecewise linear systems without symmetry, Nonlinear Anal. Series B: Real World Appl. 14 (2013), no. 5, 2002–2012.
  20. [20] LLIBRE, J.—TEIXEIRA, M.A.: Piecewise linear differential systems without equilibria produce limit cycles?, Nonlinear Dyn. 88 (2017), 157–164.10.1007/s11071-016-3236-9
  21. [21] LLIBRE, J.—ZHANG, X.: Limit cycles for discontinuous planar piecewise linear differential systems separated by one straight line and having a center, J. Math. Anal. Appl. 467 (2018), 537–549.10.1016/j.jmaa.2018.07.024
  22. [22] LUM, R.—CHUA, L.O.: Global properties of continuous piecewise-linear vector fields. Part I: Simplest case in R2, Internat. J. Circuit Theory Appl. 19 (1991), 251–307.10.1002/cta.4490190305
  23. [23] LUM, R.—CHUA, L. O.: Global properties of continuous piecewise-linear vector fields. Part II: Simplest symmetric case in R2, Internat. J. Circuit Theory Appl. 20 (1992), 9–46.10.1002/cta.4490200103
  24. [24] PERKO, L.: Differential Equations and Dynamical Systems (3rd edition). In: Texts in Appl. Math. Vol. 7. Springer-Verlag, New York, 2001.10.1007/978-1-4613-0003-8
DOI: https://doi.org/10.2478/tmmp-2021-0019 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 47 - 58
Submitted on: Sep 1, 2020
Published on: Jan 1, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 Aziza Berbache, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.