Have a personal or library account? Click to login
Two Non Algebraic Limit Cycles of a Class of Polynomial Differential Systems with Non-Elementary Equilibrium Point Cover

Two Non Algebraic Limit Cycles of a Class of Polynomial Differential Systems with Non-Elementary Equilibrium Point

Open Access
|Jan 2022

References

  1. [1] AL-DOSARY, K. I. T.: Non-algebraic limit cycles for parametrized planar polynomial systems, Internat. J. Math, 18 (2007), no. 2, 179–189.
  2. [2] BENDJEDDOU, A.—BERBACHE, A.—CHEURFA, R.: Exact algebraic and non- -algebraic limit cycles for a class of integrable quintic and planar polynomial differential systems, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N. S.) Tomul 64 (2018), no. 2. 253–259.
  3. [3] BENDJEDDOU, A.—BERBACHE, A.: A class of differential system of odd degree with explicit non algebraic limit cycle, Int. Electron. J. Pure Appl. Math. 9 (2015), no. 4, 243–254.
  4. [4] BENDJEDDOU, A.—CHEURFA, R.: Coexistence of algebraic and non-algebraic limit cycles for quintic Polynomial differential systems, Electron. J. Differential Equations 2017, Paper no. 71, 7 pp.
  5. [5] BERBACHE, A.—BENDJEDDOU, A.: Three explicit non-algebraic limit cycles for a class of polynomial differential systems, Appl. Math. E-Notes 20 (2020), 158–166.
  6. [6] CAIRÓ, L.—LLIBRE, J.: Phase portraits of cubic polynomial vector fields of Lotka- Volterra type having a rational first integral of egree 2, J. Phys. A 40 (2007), no. 24, 6329–6348.
  7. [7] CHAVARRIGA, J.—GIACOMINI, H.— GINÉ, J.— LLIBRE, J.: Darboux integrability and the inverse integrating factor, J. Differential Equations 194 (2003), 116–139.10.1016/S0022-0396(03)00190-6
  8. [8] FERRAGUT, A.—LLIBRE, J.—MAHD, A.: Liouvillian first integrals of differential equations, Trans. Amer. Math. Soc. 333 (1992), no. 2, 673–688.
  9. [9] GASULL, A.—GIACOMINI, H.—TORREGROS, J.: Explicit non-algebraic limit cycles for polynomial systems, J. Comp. and Appl. Math. 200 (2007), 448–457.10.1016/j.cam.2006.01.003
  10. [10] GINÉ, J.—GRAU, M.: Coexistence of algebraic and non-algebraic limit cycles, explicitly given, using Riccati equations, Nonlinearity 19 (2006), 1939–1950.10.1088/0951-7715/19/8/009
  11. [11] HILBERT, D.: Mathematische Problem (lecture), In: Second International Congress Math. Paris, 1900, Nachr. Ges. Wiss. Gottingen Math-Phys. Kl. Vol. 1900, pp. 253–297.
  12. [12] MOULIN, J. O.: About a conjecture on quadratic vector fields, J. Pure Appl. Algebra 165 (2001), 227–234.10.1016/S0022-4049(00)00177-8
  13. [13] MOULIN, J. O.: Simple Darboux points of polynomial planar vector fields, J. Pure Appl. Algebra 189 (2004), 247–262.10.1016/j.jpaa.2003.10.027
  14. [14] ODANI, K.: The limit cycle of the van der Pol equation is not algebraic, J. Differential Equations 115 (1995), 146–152.10.1006/jdeq.1995.1008
  15. [15] VAN DER POOL, B.: On relaxation-oscillations, Philos. Mag. VII. Ser. 2 (1926), 978–992.10.1080/14786442608564127
  16. [16] PERKO, L.: Differential Equations and Dynamical Systems (3rd edition). In: Texts in Appl. Math. Vol. 7, Springer-Verlag, New York, 2001.10.1007/978-1-4613-0003-8
DOI: https://doi.org/10.2478/tmmp-2021-0018 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 33 - 46
Submitted on: Nov 13, 2020
Published on: Jan 1, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 Sabah Benadouane, Aziza Berbache, Ahmed Bendjeddou, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.