Have a personal or library account? Click to login
Łukasiewicz Logic and the Divisible Extension of Probability Theory Cover

Łukasiewicz Logic and the Divisible Extension of Probability Theory

By: Roman Frič  
Open Access
|Jan 2022

References

  1. [1] BABICOV Á, D.: Probability integral as a linearization, Tatra Mt. Math. Publ. 72 (2018), 1–15.
  2. [2] BABICOV Á, D.—FRIČ, R.: Real functions in stochastic dependence, Tatra Mt. Math. Publ. 74 (2019), 17–34.
  3. [3] BUGAJSKI, S.: Statistical maps I. Basic properties, Math. Slovaca 51 (2001), 321–342.
  4. [4] BUGAJSKI, S.: Statistical maps II. Operational random variables, Math. Slovaca 51 (2001), 343–361.
  5. [5] DVUREČENSKIJ, A.—PULMANNOV Á, S.: New Trends in Quantum Structures. Kluwer Academic Publ., Dordrecht, Ister Science, Bratislava, 2000.10.1007/978-94-017-2422-7
  6. [6] FRIČ, R.—ELIAŠ, P.—PAPČO, M.: Divisible extension of probability, Math. Slovaca 70 (2020), 1445–1456.10.1515/ms-2017-0441
  7. [7] FRIČ, R.—PAPČO, M.: Fuzzification of crisp domains, Kybernetika 46 (2010), 1009–1024.
  8. [8] FRIČ, R.—PAPČO, M.: Probability: from classical to fuzzy, Fuzzy Sets Syst. 326 (2017), 106–114.10.1016/j.fss.2017.06.003
  9. [9] GUDDER, S.: Fuzzy probability theory, Demonstratio Math. 31 (1998), 235–254.
  10. [10] KOLMOGOROV, A.N.: Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag, Berlin, 1933.10.1007/978-3-642-49888-6
  11. [11] KÔPKA, F.—CHOVANEC F.: D-posets. Math. Slovaca 44 (1994), 21–34.
  12. [12] KUNDU, S.—CHEN, J.: Fuzzy logic or Łukasiewicz logic, A clarification. Fuzzy Sets Syst. 95 (1998), 369–379.10.1016/S0165-0114(96)00268-0
  13. [13] LOÈVE M.: Probability Theory. D. Van Nostrand, Inc., Princeton, New Jersey, 1963.
  14. [14] MESIAR, R.: Fuzzy sets and probability theory, Tatra Mt. Math. Publ. 1 (1992), 105–123.
  15. [15] MUNDICI, D.: Averaging the truth-value in Łukasiewicz logic, Studia Logica 55 (1995), 113–127.10.1007/BF01053035
  16. [16] MUNDICI, D.: A Gometric Approach to MV-algebras. In: On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory.(Saminger-Platz S., Mesiar R. eds.) Studies in Fuzziness and Soft Computing Vol. 336 (Saminger-Platz S., Mesiar R. eds.), (Dedicated to E. P. Klement), Springer, Cham. Berlin, 2016. https://doi.org/10.1007/978-3-319-28808-6_410.1007/978-3-319-28808-6_4
  17. [17] NAVARA, M.: Probability theory of fuzzy events, In: Fourth Conference of the European Society for Fuzzy Logic and Technology and 11 Rencontres Francophones sur la Logique Floue et ses Applications (E. Montseny, P. Sobrevilla eds.), Universitat Politecnica de Catalunya, Barcelona, Spain, 2005, pp. 325–329.
  18. [18] PAVELKA, J.: On fuzzy logic I, Z. Math. Logik Grundlagen Math. 25 (1979), 45–52.10.1002/malq.19790250304
  19. [19] PAVELKA, J.: On fuzzy logic II, Z. Math. Logik Grundlagen Math. 25 (1979), 119–134.10.1002/malq.19790250706
  20. [20] PAVELKA, J.: On fuzzy logic III, Z. Math. Logik Grundlagen Math. 25 (1979), 447–464.10.1002/malq.19790252510
  21. [21] RIEČAN, B.—MUNDICI, D.: Probability on MV-algebras, In: (E. Pap, ed.), Handbook of Measure Theory, Vol. II. North-Holland, Amsterdam, 2002, pp. 869–910.10.1016/B978-044450263-6/50022-1
  22. [22] TURUNEN, E.: Mathematics behind Fuzzy Logic. Physica-Verlag, Heidelberg, 1999.
  23. [23] ZADEH, L.A.: Probability measures of fuzzy events, J. Math. Anal. Appl. 23 (1968), 421–427.10.1016/0022-247X(68)90078-4
DOI: https://doi.org/10.2478/tmmp-2021-0008 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 119 - 128
Submitted on: Nov 20, 2020
Published on: Jan 1, 2022
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2022 Roman Frič, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.