References
- [1] ABDOU, A.A.N.—KHAMSI, M.A.: Fixed point theorems in modular vector spaces, J. Nonlinear Sci. Appl. 10 (2017), 4046–4057.10.22436/jnsa.010.08.01
- [2] GRABIEC, A.: The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen 48 (1996), 217–235.10.5486/PMD.1996.1559
- [3] MIRMOSTAFAEE, V.—MOSLEHIAN, M. S.: Stability of additive mappings in non-Archimedean fuzzy normed spaces, Fuzzy Sets and 5ystems 160 (2009), 1643–1652.10.1016/j.fss.2008.10.011
- [4] KIM, C.—PARK, S.W.: A Fixed point approach to the stability of additive-quadratic functional equations in modular spaces, J. of The Chungcheong Math. Soc. 18 (2015), 321–330.10.14403/jcms.2015.28.2.321
- [5] HYERS, D. H.: On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.10.1073/pnas.27.4.222107831016578012
- [6] HYERS, D. H.: Stability of functional equations in several variables. Birkhauser, 1998.10.1007/978-1-4612-1790-9
- [7] ELQORACHI, E.—RASSIAS, M. TH.: Generalized Hyers-Ulam stability of trigonometric functional equations, Mathematics, 6 (2018).
- [8] CRIVELLI, F.: Absolute values, valuations and completion. Algebra in Positive Characteristic, 2008.
- [9] SADEGHI, G.: A fixed point approach to stability of functional equations in modular spaces. Bull. Malays. Math. Sci. Soc. 37 (2014), no.2., 333–344.
- [10] H. CHODA, H.—MIURA, F.—TAKAHASI, S.: On the Hyers–Ulam stability of real continuous function valued differentiable map, Tokyo J. Math. 24 (2001), 467–476.10.3836/tjm/1255958187
- [11] KIM, H.—HONG, Y.: Approximate Cauchy-Jensen type mappings in modular spaces, Far East J. Math. Sci. 7 (2017), 1319–1336.
- [12] NAKANO, H.: Modular on Semi-Ordered Spaces. Tokyo, Japan, 1959.
- [13] ACZEL, J.—DHOMBRES, J.: Functional Equations in Several Variables. With Applications to Mathematics, Information Theory and to the Natural and Social Sciences. Encyclopedia of Mathematics and Its Applications Vol. 31. Cambridge University Press, Cambridge, 1989.
- [14] CHMIELINSKI, J.—TABOR, J.: On approximate solutons of the Pexider equation, Aequationes Math. 46 (1993), 143–163.10.1007/BF01834004
- [15] WANG, J.: Some further generalization of the Ulam-Hyers-Rassias stability of functional equations, J. Math. Anal. Appl. 263 (2001), 406–423.10.1006/jmaa.2001.7626
- [16] PARNAMI, J.C.—VASUDEVA, H.L.: On Jensen’s functional equation, Aequationes Math. 43 (1992), 211–218.10.1007/BF01835703
- [17] MUSIELAK, J.: Orlicz Spaces and Modular Spaces. In: Lecture Notes in Math. Vol. 1034, Springer-Verlag, Berlin, 1983.
- [18] WONGKUM, K.—CHAIPUNYA, P.—KUMAM P.: On the generalized Ulam-Hyers-Rassias stability of quadratic mappings in modular spaces without Δ2-conditions, J. Funct. Spaces (2015), Article ID 461719, 6 p.
- [19] WONGKUM, K.—KUMAMA, P.—CHOB, Y.—THOUNTHONGE, P.—CHAIPUNYAA, P.: On the generalized Ulam-Hyers-Rassias stability for quartic functional equation in modular spaces, J. Nonlinear Sci. Appl. 10 (2017), 1399–1406.10.22436/jnsa.010.04.10
- [20] CADARIU, L.—RADU, V.: Fixed points and the stability of Jensen’s functional equation, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 1, 1–15.
- [21] CADARIU, L.—RADU, V.: Fixed points and stability for functional equations in probabilistic metric and random normed spaces, Fixed Point Theory and Appl. (2009), Article ID 589143, 18 p.
- [22] KHAMSI, M.A.: Quasicontraction mappings in modular spaces without Δ2-condition, Fixed Point Theory Appl. (2008), Article ID 916187, 6 p.
- [23] KHAMSI, M. A.—KOZLOWSKI, W. M.: Fixed Point Theory in Modular Function Spaces. Birkhäuser/Springer, Cham, Heidelberg, New York, 2015.10.1007/978-3-319-14051-3
- [24] GHAEMI, M. B.—CHOUBIN, M.—SADEGHI, G.—GORDJI, M.: A Fixed point approach to stability of quintic functional equations in modular spaces, Kyungpook Math. J. 55 (2015), 313–326.10.5666/KMJ.2015.55.2.313
- [25] ABDOLLAHPOUR, M. R.—RASSIAS, M. TH.: Hyers-Ulam Stability of hypergeometric differential equations, Aequationes Math. 93 (2019), 691–698.10.1007/s00010-018-0602-3
- [26] RASSIAS, M. TH.: Solution of a functional equation problem of Steven Butler, Octogon Math. Mag. 12 (2004), 152–153.
- [27] KAYAL, N. C.—SAMANTA, T. K.—SAHA, P.—CHOUDHURY, B.S.: A Hyers-Ulam-Rassias stability result for functional equations in intuitionistic fuzzy Banach spaces, Iranian J. Fuzzy Systems 13, (2016), 87–96.
- [28] KANNAPPAN, PL.: Functional Equations and Inequalities with Applications. In: Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2009.10.1007/978-0-387-89492-8
- [29] SAHOO, P. K.—KANNAPPAN, PL.: Introduction to Functional Equations. CRC Press, Boca Raton, FL, 2011.10.1201/b10722
- [30] SAHA, P.—SAMANTA, T. K. —MONDAL, P.—CHOUDHURY, B. S.: Stability of two variable pexiderized quadratic functional equation in intuitionistic fuzzy Banach spaces, Proyecciones 38, no. 3, (2019), 447–467.
- [31] JUNG, S. M.: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Springer-Verlag, Berlin, 2011.10.1007/978-1-4419-9637-4
- [32] JUNG, S.M.: Hyers-Ulam stability of linear differential equations of first order II, App. Math. Lett. 19, (2006), 854–858.10.1016/j.aml.2005.11.004
- [33] JUNG, S. M.—RASSIAS, M. TH.—MORTICI, C.: On a functional equation of trigonometric type, Appl. Math. Comp. 252 (2015), 294–303.10.1016/j.amc.2014.12.019
- [34] JUNG, S. M.—RASSIAS, M. TH.: A linear functional equation of third order associated to the Fibonacci numbers, Abstr. Appl. Anal. 2014 (2014), Article ID 137468.
- [35] JUNG, S.M.—POPA, D.—RASSIAS, M.TH.: On the stability of the linear functional equation in a single variable complete metric group, J. Global Optim. 59 (2014), 165–171.10.1007/s10898-013-0083-9
- [36] ULAM, S. M.: Problems in Modern Mathematics. Chapter VI, Science Editions John Wiley & Sons, Inc., New York, 1964.
- [37] MIURA, T.—MIYAJIMA, S.—TIKAHASI, S.: A characterization of Hyers–Ulam stability of first order linear differential operators, J. Math. Appl. 286 (2003), 136–146.
- [38] SAMANTA, T. K.—MONDAL, P.—KAYAL, N. C.: The generalized Hyers-Ulam-Rassias stability of a quadratic functional equation in fuzzy Banach spaces, Ann. Fuzzy Math. Inform. 6 (2013), 59–68.
- [39] RASSIAS, M. TH.: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soci. 72 (1978) no. 2, 297–300.
- [40] RASSIAS, M.TH.: Functional Equations and Inequalities. Kluwer Academic Publishers, 2000.10.1007/978-94-011-4341-7
- [41] KOZLOWSKI, W. M.: Modular Function Spaces. In: Series of Monographs and Textbooks in Pure and Applied Mathematics Vol. 122, Marcel Dekker, New York, 1988.
- [42] DONG, Y.: On approximate isometries and application to stability of a function, J. Math. Anal. Appl. 426 (2015), 125–137.10.1016/j.jmaa.2015.01.045
- [43] LEE, Y. H.—JUNG, S. M.—RASSIAS, M. TH.: On an n-dimensional mixed type additive and uadratic functional equation, Applied Mathematics and Computation, 228 (2014), 13–16.10.1016/j.amc.2013.11.091
- [44] LEE, Y. H.—JUNG, S. M.—RASSIAS, M. TH.: Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal. 12 (2018), no. 1, 43–61.
- [45] GAJDA, Z.: On stability of additive mapping, J. Math. Math. Sci. 14 (1991), 431–434.10.1155/S016117129100056X