Have a personal or library account? Click to login
Necessary and Sufficient Conditions for Oscillation of Solutions to Second-Order Neutral Differential Equations with Impulses Cover

Necessary and Sufficient Conditions for Oscillation of Solutions to Second-Order Neutral Differential Equations with Impulses

Open Access
|Nov 2020

Abstract

In this work, necessary and sufficient conditions for oscillation of solutions of second-order neutral impulsive differential system

{(r(t)(z(t))γ)+q(t)xα(σ(t))=0,tt0,tλk,Δ(r(λk)(z(λk))γ)+h(λk)xα(σ(λk))=0,k𝕅\left\{ {\matrix{{{{\left( {r\left( t \right){{\left( {z'\left( t \right)} \right)}^\gamma }} \right)}^\prime } + q\left( t \right){x^\alpha }\left( {\sigma \left( t \right)} \right) = 0,} \hfill & {t \ge {t_0},\,\,\,t \ne {\lambda _k},} \hfill \cr {\Delta \left( {r\left( {{\lambda _k}} \right){{\left( {z'\left( {{\lambda _k}} \right)} \right)}^\gamma }} \right) + h\left( {{\lambda _k}} \right){x^\alpha }\left( {\sigma \left( {{\lambda _k}} \right)} \right) = 0,} \hfill & {k \in \mathbb{N}} \hfill \cr } } \right. are established, where z(t)=x(t)+p(t)x(τ(t))z\left( t \right) = x\left( t \right) + p\left( t \right)x\left( {\tau \left( t \right)} \right)

Under the assumption (r(η))-1/αdη=\int {^\infty {{\left( {r\left( \eta \right)} \right)}^{ - 1/\alpha }}d\eta = \infty } two cases when γ>α and γ<α are considered. The main tool is Lebesgue’s Dominated Convergence theorem. Examples are given to illustrate the main results, and state an open problem.

DOI: https://doi.org/10.2478/tmmp-2020-0025 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 157 - 170
Submitted on: May 18, 2020
Published on: Nov 4, 2020
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Shyam Sundar Santra, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.