Have a personal or library account? Click to login
Some Remark on Oscillation of Second Order Impulsive Delay Dynamic Equations on Time Scales Cover

Some Remark on Oscillation of Second Order Impulsive Delay Dynamic Equations on Time Scales

Open Access
|Nov 2020

References

  1. [1] AGARWAL, R. P.—BOHNER, M.—PETERSON, A.: Inequality on time scales: A Survay, Math. Inequal. Appl. 4 (2001), 555–557.
  2. [2] AGWA, H. A.—KHODIER, AHMED M. M.—ATTEYA, HEBA M.: Oscillation of second order nonlinear impulsive dynamic equations on time scales, J. Anal. Number Theory 5 (2017), 147–154.10.18576/jant/050209
  3. [3] AGWA, H. A.—KHODIER, AHMED M. M. — ATTEYA, HEBA M.: Oscillation of second order nonlinear impulsive dynamic equations with a damping term on time scales, Acta Math. Univ. Comenian. 1 (2019), 23–38.
  4. [4] BELARBI, A.—BENCHOHRA, M.—OUAHAB, A.: Extremal solutions for impulsive dynamic equations on time scales, Comm. Appl. Nonlinear Anal. 12 (2005), 85–95.
  5. [5] BENCHOHRA, M.—HENDERSON, J.—NTOUYAS, S. K.—OUAHAB, A.: On first order impulsive dynamic equations on time scales, J. Difference Equ. Appl. 10 (2004), 541–548.10.1080/10236190410001667986
  6. [6] BENCHOHRA, M.—NTOUYAS, S. K.—OUAHAB, A.: Extremal solutions of second order impulsive dynamic equations on time scales, J. Math. Anal. Appl. 324 (2006), 425–434.10.1016/j.jmaa.2005.12.028
  7. [7] BOHNER, M.—PETERSON, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhauser, Boston, 2001.10.1007/978-1-4612-0201-1
  8. [8] BOHNER, M.—PETERSON, A.: Advances in Dynamic Equations on Time Scales. Birkhauser, Boston, 2003.10.1007/978-0-8176-8230-9
  9. [9] BOHNER, M.—TISDELL, C.: Oscillation and nonoscillation of forced second order dynamic equations, Pacific J. Math. 230 (2007), 59–71.10.2140/pjm.2007.230.59
  10. [10] KABADA, A.—VIVERO, D. R.: Criterions for absolute continuity on time scales, J. Difference Equ. Appl. 11 (2005), 1013–1028.10.1080/10236190500272830
  11. [11] CHANG, Y. K.—LI, W. T.: Existence results for impulsive dynamic equations on time scales with nonlocal initial conditions, Math. Comput. Modelling 43 (2006), 337–384.
  12. [12] HE, Z. — GE, W.: Oscillation of impulsive delay differential equations, Indian J. Pure Appl. Math. 31 (2000), 1089–1101.
  13. [13] HE, Z. — GE, W.: Oscillation in second order linear delay differential equations with nonlinear impulses, Math. Slovaca. 52 (2002), 331–341.
  14. [14] HARDY, G. H.—LITTLEWOOD, J. E.—POLYA, G.: Inequalities. Second ed., Cambridge University Press, Cambridge, 1952.
  15. [15] HILGER, S.: Analysis on measure chains — a unified approach to continuous and discrete calculus, Results Math. 18 (1990), 1–2, 18–56.
  16. [16] HUANG, M.—FENG, W.: Oscillation of second order nonlinear impulsive dynamic equations on time scales, Electron. J. Differential Equations 72 (2007), 1–13.
  17. [17] HUANG, M.—FENG, W.: Oscillation criteria for impulsive dynamic equations on time scales, Electron. J. Differential Equations 169 (2007), 1–9.
  18. [18] HUANG, M.: Oscillation criteria for second order nonlinear dynamic equations with impulses, Comput. Math. Appl. 59 (2010), 31–41.10.1016/j.camwa.2009.03.039
  19. [19] HUANG, M.—WEN, K.: Oscillation for forced second-order impulsive nonlinear dynamic equations on time scales, Discrete Dyn. Nat. Soc. 2019, Art. ID 7524743, 1–7.
  20. [20] JIAO, J.—CHEN, L.—LI, M.: Asymptotic behaviour of solutions of second order nonlinear impulsive differential equations, J. Math. Anal. Appl. 337 (2008), 458–463.10.1016/j.jmaa.2007.04.021
  21. [21] KAUFMANN, E. R.—KOSMATOV, N.—RAFFOUL, Y. N.: Impulsive dynamic equations on a time scale, Electron. J. Differ. Equ. 69 (2008), 1–9.
  22. [22] KOSLOV, V. V.—TRESHCHEEV, D. V.: Billiards- a genetic introduction to the dynamics of systems with impacts. Amer. Math. Soc. 1991.
  23. [23] LI, Q.—GUO, F.: Oscillation of solutions to impulsive dynamic equations on time scales, Electron. J. Differential Equations 122 (2009), 1–7.
  24. [24] LI, Q.—ZHOU, L.: Oscillation criteria for second order impulsive dynamic equations on time scales, Appl. Math. E-Notes 11 (2011), 33–40.
  25. [25] PENG, M.: Oscillation caused by impulses, J. Math. Anal. Appl. 255 (2001), 163–176.10.1006/jmaa.2000.7218
  26. [26] PENG, M.: Oscillation criteria for second order impulsive delay difference equations, Appl. Math. Comput. 146 (2003), 227–235.
  27. [27] SUN, S.—HAN, Z.—ZHANG, C.: Oscillation of second order delay dynamic equations on time scales, J. Appl. Math. Comput. 30 (2009), 459–468.10.1007/s12190-008-0185-6
  28. [28] ZHANG, Q. — GAO, L.—WANG, L.: Oscillation of second order nonlinear delay dynamic equations on time scales, Comput. Math. Appl. 61 (2011), 2342–2348.10.1016/j.camwa.2010.10.005
DOI: https://doi.org/10.2478/tmmp-2020-0022 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 115 - 126
Submitted on: Mar 4, 2019
Published on: Nov 4, 2020
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Gokula Nanda Chhatria, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.