Have a personal or library account? Click to login
3D Cell Image Segmentation by Modified Subjective Surface Method Cover

3D Cell Image Segmentation by Modified Subjective Surface Method

Open Access
|Apr 2020

References

  1. [1] CORSARO, S.—MIKULA, K.—SARTI, A.—SGALLARI, F.: Semi-implicit co-volume method in 3D image segmentation, SIAM J. Sci. Comput. 28 (2006), no. 6, 2248–2265.10.1137/060651203
  2. [2] EVANS, L. C.—SPRUCK, J.:, Motion of level sets by mean curvature I, J. Differential Geom. 33 (1991), 635–681. DOI:10.4310/jdg/121444655910.4310/jdg/1214446559
  3. [3] FAURE, E.—SAVY, T.—RIZZI, B.—MELANI, C.—DRBLÍKOVÁ, O.—FABREGÈS, D.—ŠPIR, R.—HAMMONS, M.—ČUNDERLÍK, R.—RECHER, G.—LOMBARDOT, B.—DULOQUIN, L.—COLIN, I.—KOLLÁR, J.—DESNOULEZ, S.—AFFATICATI, P.—MAURY, B.—BOYREAU, A.—NIEF, J.—CALVAT, P.—VERNIER, P.— FRAIN, M.—LUTFALLA, G.—KERGOSIEN, Y.—SURET, P.—REMEŠÍKOVÁ, M.—DOURSAT, R.—SARTI, A.—MIKULA, K.—PEYRIÉRAS, N.— BOURGINE, P.: An algorithmic workflow for the automated processing of 3D+time microscopy imaging of developing organisms and reconstruction of their cell lineage, Nature Commun. 7 (2016), February 2016. Article number: 8674, DOI:10.1038/ncomms9674, https://www.math.sk/mikula/NCOMMS-15-07907-T_MainArticle.pdf10.1038/ncomms9674
  4. [4] FROLKOVIČ, P.—MIKULA, K.—PEYRIÉRAS, N.—SARTI, A.: A counting number of cells and cell segmentation using advection-diffusion equations,Kybernetika, 43 (2007), no. 6, 817–829.
  5. [5] KÓSA, B.—MIKULA, K.—UBA, M. O.—WEBERLING, A.—CHRISTODOULOU, N.— ZERNICKA-GOETZ, M.: 3D Image Segmentation Supported by A Point Cloud, Discrete and Continuous Dynamical Systems - Series S (DCDS-S), (Submitted).
  6. [6] MIKULA, K.—SARTI, A.—SGALLARI, F.: Co-volume level set method in subjective surface based medical image segmentation. In: Handbook of Medical Image Analysis: Segmentation and Registration Models (J. Suri et al., eds.), Springer, New York, 2005, pp. 583–626.10.1007/0-306-48551-6_11
  7. [7] MIKULA, K.—REMEŠÍKOVÁ, M.: Finite volume schemes for the generalized subjective surface equation in image segmentation,Kybernetika 4, no. 4 (2009), 646–656.
  8. [8] MIKULA, K.—PEYRIÉRAS, N.—REMEŠÍKOVÁ, M.—SARTI, A.: 3D embryogenesis image segmentation by the generalized subjective surface method using the finite volume technique.In: Finite Volumes for Complex Applications V: Problems and Perspectives (R. Eymard, J. M. Herard, eds.), ISTE and WILEY, London, 2008, pp. 585–592.
  9. [9] MIKULA, K.—PEYRIÉRAS, N.—REMEŠÍKOVÁ, M.—STAŠOVÁ, O.: Segmentation and analysis of 3D zebrafish cell image data.In: Proc. of the 3rd International Congress on Image and Signal Processing CISP-BMEI 2010, Yantai, China, Vol. 3 (2010), pp. 1444–1448.10.1109/CISP.2010.5648035
  10. [10] PERONA, P.—MALIK, J.:, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence12 (1990), 629–639. DOI:10.1109/34.5620510.1109/34.56205
  11. [11] SARTI, A.—MALLADI, R.—SETHIAN, J.A.: Subjective surfaces: a method for completing missing boundaries.In: Proc. Natl. Acad. Sci. USA 97 (2000), no. 12, pp. 6258–6263.10.1073/pnas.110135797
  12. [12] SARTI, A.—MALLADI, R.—SETHIAN, J. A.:, Subjective Surfaces: a geometric model for boundary completion, Int. J. Comput. Vis. 46 (2002), no. 3, 201–221.10.1023/A:1014028906229
  13. [13] ZANELLA, C.—RIZZI, B.—MELANI, C.—CAMPANA, M.—BOURGINE, P.— MIKULA, K.—PEYRIÉRAS, N.—SARTI, A.: Segmentation of cells from 3-d confocal images of live zebrafish embryo.In: Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007 (2007), 6027–30.10.1109/IEMBS.2007.4353722
DOI: https://doi.org/10.2478/tmmp-2020-0010 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 147 - 162
Submitted on: May 16, 2019
Published on: Apr 24, 2020
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 MarKjoe Olunna Uba, Karol Mikula, Zuzana Krivá, Hanh Nguyen, Thierry Savy, Eléna Kardash, Nadine Peyríeras, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.