Have a personal or library account? Click to login
Efficient 3D Shape Registration by Using Distance Maps and Stochastic Gradient Descent Method Cover

Efficient 3D Shape Registration by Using Distance Maps and Stochastic Gradient Descent Method

Open Access
|Apr 2020

References

  1. [1] COOK, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs. Applications of GPU Computing Series. Elsevier Science, London, 2012.
  2. [2] COOTES, T.—TAYLOR, C.—COOPER, D.—GRAHAM, J.: Active Shape Models-Their Training and Application, Computer Vision and Image Understanding 61 (1995), 38–59.10.1006/cviu.1995.1004
  3. [3] FOMEL, S.: Traveltime Computation with the Linearized Eikonal Equation, Report, Sep-94, 1997, 123–131.
  4. [4] HYSING, S.—TUREK, S.: The Eikonal equation: numerical efficiency vs. algorithmic complexity on quadrilateral grids.In: Proceedings of the Algorythmy 2005, pp. 22–31.
  5. [5] INTEL® :. Intel® CoreTM i7-5820K Processor (15M Cache, up to 3.60 GHz) Product Specifications. https://ark.intel.com/content/www/us/en/ark/products/82932/intel-core-i7-5820k-processor-15m-cache-up-to-3-60-ghz.html.
  6. [6] KASS, M.—WITKIN, A.—TERZOPOULOS, D.: Snakes: Active contour models,Int. J. Comput. Vision 1 (1988), 321–331.10.1007/BF00133570
  7. [7] KLEMM, M.—DE SUPINSKI, B.—BOARD, T.: OpenMP Application Programming Interface Specification Version 5.0. Independently Published, 2018.
  8. [8] LI, M.—ZHANG, T.—CHEN, Y.—SMOLA, A. J.: Efficient mini-batch training for stochastic optimization.In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, ACCM, New York, NY, 2014. pp. 661–670.
  9. [9] MARKOVSKY, I.—MAHMOODI, S.: Least-squares contour alignment, IEEE Signal Processing Letters 16 (2009), 41–44.10.1109/LSP.2008.2008588
  10. [10] MARQUES, J. S.—ABRANTES, A. J.: Shape alignment — optimal initial point and pose estimation, Pattern Recognition Letters 18 (1997), 49–53.10.1016/S0167-8655(96)00120-1
  11. [11] METEL, M. R.: Mini-batch stochastic gradient descent with dynamic sample sizes,arXiv e-prints (2017), arXiv:1708.00555.
  12. [12] MIKULA, K.—URBÁN, J.: Fully automatic affine registration of planar parametric curves,In: Proceedings of the Conference Algoritmy 2016, pp. 343–352.
  13. [13] OKOCK, P. O.—JOZEF, U.—UBA, M. O.: ImageInLib v1.0.0 Release, February 15, 2019.
  14. [14] PARAGIOS, N.—ROUSSON, M.—RAMESH, V.: Matching Distance Functions: A Shape-to-Area Variational Approach for Global-to-Local Registration. ECCV, Copenhangen, Denmark, 2002.10.1007/3-540-47967-8_52
  15. [15] PARAGIOS, N.—ROUSSON, M.—RAMESH, V.: Matching Distance Functions: A Shape-to-Area Variational Approach for Global-to-Local Registration. In: Computer Vision–ECCV 2002 (A. Heyden, G. Sparr, M. Nielsen, P. Johansen, eds.), Springer-Verlag, Berlin, 2002, pp. 775–789,
  16. [16] OKOCK, P.: Efficient 3D shape registration using distance maps and stochastic gradient descent method. http://bit.ly/2LXmVLK.
  17. [17] ROBBINS, H.—MONRO, S.: A stochastic approximation method, Ann. Math. Stat. 22 (1951), 400–407.10.1214/aoms/1177729586
  18. [18] ROBBINS, H.—SIEGMUND, D.: A Convergence Theorem For Non Negative Almost Supermartingales And Some Applications**Research supported by NIH Grant 5–R01–GM-16895–03 and ONR Grant N 00014-67-A-0108-0018..In: Optimizing Methods in Statistics (J. S. Rustagi, ed.), Academic Press, 1971. pp. 233–257.
  19. [19] ROBBINS, H.—MONRO, S.: A Stochastic Approximation Method, Ann. Math. Statist. 22 (1951), 400–407.10.1214/aoms/1177729586
  20. [20] RUSTAGI, J.: Optimizing Methods in Statistics: Proceedings. Academic Press,1971.
  21. [21] SETHIAN, J. A.: Level Set Methods and Fast Marching Methods.In:Cambridge Monographs on Appl. Comput. Math. Vol. 3, Cambridge: Cambridge University Press. xx, 1999.
  22. [22] URBÁN, J.: The New Improvements of Atlas Based Image Segmentations.PhD Thesis, Slovak University of Technology in Bratislava, jozef.urban@gmail.com, 7, 2016.
  23. [23] WIKIPEDIA CONTRIBUTORS: Brute-force search —Wikipedia, The Free Encyclopedia. 2019. [Online; accessed 9-June-2019] https://en.wikipedia.org/w/index.php?title=Brute-force_search&oldid=890487309
  24. [24] ZAHN, C. T.—ROSKIES, R. Z.: Fourier descriptors for plane closed curves, IEEE Trans. Comput. C-21 (1972), 269–281.10.1109/TC.1972.5008949
  25. [25] ZHAO, H.: A fast sweeping method for eikonal equations, Math. Comput. 74 (2005), no. 250, 603–627.
DOI: https://doi.org/10.2478/tmmp-2020-0006 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 81 - 102
Submitted on: Jun 26, 2019
Published on: Apr 24, 2020
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Polycarp Omondi Okock, Jozef Urbán, Karol Mikula, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.