Have a personal or library account? Click to login
The Finite Element Method as a Tool to Solve the Oblique Derivative Boundary Value Problem in Geodesy Cover

The Finite Element Method as a Tool to Solve the Oblique Derivative Boundary Value Problem in Geodesy

Open Access
|Apr 2020

References

  1. [1] BARRETT, J. W.—ELLIOTT, CH. M.: Fixed mesh finite element approximations to a free boundary problem for an elliptic equation with an oblique derivative boundary condition, Compt. Math. Appl. 11 (1985), no. 4, 335–345.10.1016/0898-1221(85)90058-6
  2. [2] BAUER, F.: An Alternative Approach to the Oblique Derivative Problem in Potential Theory. In: PhD Thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern, Shaker Verlag, Aachen, Germany, 2004.
  3. [3] BECKER, J. J.—SANDWELL, D. T.—SMITH, W. H. F.—BRAUD, J.—BINDER, B.— DEPNER, J.—FABRE, D.—FACTOR, J.—INGALLS, S.—KIM S. H.—LADNER, R.— MARKS, K.—NELSON, S.—PHARAOH, A.—TRIMMER, R.—ROSENBERG, J. VON, WALLACE, G.—WEATHERALL, P.: Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30 PLUS, Marine Geodesy 32 (2009), no. 4, 355–371.10.1080/01490410903297766
  4. [4] BITZADSE, A. V.: Boundary-Value Problems for Second-Order Elliptic Equations.North-Holland, Amsterdam, 1968.
  5. [5] BJERHAMMAR, A.—SVENSSON, L.: On the geodetic boundary value problem for a fixed boundary surface, A satellite approach, Bull Geod. 57 (1983), no. 1–4, 382–393.10.1007/BF02520941
  6. [6] BRENNER, S. C.—SCOTT, L. R.: The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, 2002.10.1007/978-1-4757-3658-8
  7. [7]ČUNDERLÍ K, R.—MIKULA, K.—MOJZEŠ, M.: Numerical solution of the linearized fixed gravimetric boundary-value problem,J. Geod. 82 (2008), 15–29.10.1007/s00190-007-0154-0
  8. [8]ČUNDERLÍ K, R.—MIKULA, K.: Direct BEM for high-resolution gravity field modelling, Stud. Geophys. Geod. 54 (2010), no. 2, 219–23810.1007/s11200-010-0011-0
  9. [9]ČUNDERLÍK,R.—MIKULA, K.—ŠPIR R.: An oblique derivative in the direct BEM formulation of the fixed gravimetric BVP,IAG Symp. 137 (2012), 227–231.10.1007/978-3-642-22078-4_34
  10. [10] FAŠKOVÁ, Z.: Numerical Methods for Solving Geodetic Boundary Value Problems.PhD Thesis, SvF STU, Bratislava, Slovakia, 2008.
  11. [11] FAŠKOVÁ, Z.—ČUNDERLÍK, R.—MIKULA, K.: Finite element method for solving geodetic boundary value problems,J.Geod. 84 (2010), no. 2, 135–14410.1007/s00190-009-0349-7
  12. [12] FREEDEN, W.: Harmonic splines for solving boundary value problems of potential theory. In: J. C. Mason, M. G. Cox, eds.) Algorithms for Approximation, (Shrivenham, 1985), Inst. Math. Appl. Conf. Ser. New Ser. Vol. 10, Oxford Univ. Press, New York, pp. 507–529.
  13. [13] FREEDEN, W.—GERHARDS, C.: Geomathematically Oriented Potential Theory,CRC Press (2013)10.1201/b13057
  14. [14] FREEDEN, W.—KERSTEN, H.: A constructive approximation theorem for the oblique derivative problem in potential theory, Mathematical Methods in Appl. Sci. 3 (1981), 104–114.10.1002/mma.1670030108
  15. [15] FREEDEN, W.—MICHEL, V.: Multiscale Potential Theory. With Applications to Geo-science.In: Applied and Numerical Harmonic Analysis.Birkhäuser Boston, Inc., Boston, MA, 2004.10.1007/978-1-4612-2048-0
  16. [16] FREEDEN W.—NUTZ H.: On the Solution of the Oblique Derivative Problem by Constructive Runge-Walsh Concepts,In: Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science. (I. Pesenson,Q.Le Gia, A. Mayeli, H. Mhaskar, Dx. Zhou, eds.) Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. 2017.10.1007/978-3-319-55556-0_11
  17. [17] GALLISTL, D.: Numerical approximation of planar oblique derivative problems in non-divergence form,Math. Comp. 88 (2019), 1091–111910.1090/mcom/3371
  18. [18] GUTTING, M.: Fast Multipole Methods for Oblique Derivative Problems. In: PhD Thesis, Geomathematics Group, Department of Mathematics, University of Kaiserslautern. Shaker Verlag, Aachen, Germany 2007.
  19. [19] GUTTING, M.: Fast multipole accelerated solution of the oblique derivative boundary value problem, International Journal on Geomathematics 3 (2012), 223–252.10.1007/s13137-012-0038-1
  20. [20] HOLOTA, P.: Coerciveness of the linear gravimetric boundary-value problem and a geometrical interpretation,J. Geod. 71 (1997), 640–651.10.1007/s001900050131
  21. [21] KAWECKI, E.: A Discontinuous Galerkin Finite Element Method for Uniformly Elliptic Two Dimensional Oblique Boundary-Value Problems, SIAM J.Numer.Anal. 57 (2019), no. 2, 751–778.10.1137/17M1155946
  22. [22] KLEES, R.: Boundary value problems and approximation of integral equations by finite elements, Manuscripta Geodaetica 20 (1995), 345–361.10.1007/BF03655469
  23. [23] KLEES, R.—VAN GELDEREN, M.—LAGE, C.—SCHWAB, C.: Fast numerical solution of the linearized Molodensky problem,J. Geod. 75 (2001), 349–362.10.1007/s001900100183
  24. [24] KOCH, K. R.—POPE, A. J.: Uniqueness and existence for the geodetic boundary value problem using the known surface of the earth, Bull. Geod. 46 (1972), 467–476.10.1007/BF02522053
  25. [25] LEHMANN, R.—KLEES, R.: Numerical solution of geodetic boundary value problems using a global reference field,J. Geod. 73, (1999), 543–554.10.1007/s001900050265
  26. [26] LEVEQUE, R. J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.10.1017/CBO9780511791253
  27. [27] LIEBERMAN, G. M.: Oblique Derivative Problems for Elliptic Equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2003.
  28. [28] MACÁK, M.—ČUNDERLÍK, R.—MIKULA, K.—MINARECHOVÁ, Z.: An upwind-based scheme for solving the oblique derivative boundary-value problem related to the physical geodesy, J. Geod. Sci. 5, (2015) no. 1, 180–188.10.1515/jogs-2015-0018
  29. [29] MACÁK, M.—MIKULA, K.—MINARECHOVÁ, Z.: Solving the oblique derivative boundary-value problem by the finite volume method. In: 19th Conference on Scientific Computing, Podbanske, Slovakia, September 9-14, 2012, ALGORITMY 2012 (Proceedings of contributed papers and posters), Publishing House of STU, 2012, pp. 75–84.
  30. [30] MACÁK, M.—MINARECHOVÁ, Z.—MIKULA, K.: A novel scheme for solving the oblique derivative boundary-value problem, Stud. Geophy. Geo. 58 (2014), no. 4, 556–570.10.1007/s11200-013-0340-x
  31. [31] MATLAB version 2018 b. The MathWorks Inc., Natick, Massachusetts: 2018.
  32. [32] MAYER-GURR, T., ET AL,: The new combined satellite only model GOCO03s. In: Presented at the GGHS-2012 in Venice, Italy 2012.
  33. [33] MEDL’A, M.—MIKULA, K.—ČUNDERLÍK, R.—MACÁK, M.: Numerical solution to the oblique derivative boundary value problem on non-uniform grids above the Earth topography, J. Geod. DOI 10.1007/s00190-017-1040-z(2017).
  34. [34] MEISSL, P.: The use of finite elements in physical geodesy. Report 313. In: Geodetic Science and Surveying, The Ohio State University 1981. https://apps.dtic.mil/dtic/tr/fulltext/u2/a104164.pdf
  35. [35] MINARECHOVÁ, Z.—MACÁK, M.—ČUNDERLÍK, R.—MIKULA, K.: High-resolution global gravity field modelling by the finite volume method, Stud. Geophys Geo. 59 (2015), 1–20.10.1007/s11200-013-0634-z
  36. [36] MIRANDA, C.: Partial Differential Equations of Elliptic Type. Springer-Verlag, Berlin, 1970.10.1007/978-3-662-35147-5
  37. [37] MRÁZ, D.—BOŘÍK, M.—NOVOTNÝ, J.: On the convergence of the h-p finite element method for solving boundary value problems in physical geodesy. In: International Symposium on Earth and Environmental Sciences for Future Generations (J. T. Freymueller, L. Sánchez, eds.), International Association of Geodesy Symposia Vol. 147, Springer, Cham, Switzerland. 2016, pp. 39–45.10.1007/1345_2016_237
  38. [38] PAVLIS, N.K.—HOLMES, S.A.—KENYON, S.C.—FACTOR, J.K.: The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), Journal of Geophysical Research 117 (2012), B04406. DOI:10.1029/2011JB00891610.1029/2011JB008916
  39. [39] SHAOFENG, B.—DINGBO, C.: The finite element method for the geodetic boundary value problem, Manuscr. Geod. 16 (1991), 353–359.10.1007/BF03655424
  40. [40]ŠPRLÁK, M.—FAŠKOVÁ, Z.—MIKULA, K.: On the application of the coupled finiteinfinite element method to the geodetic boundary value problem, Stud. Geophys. Geo. 55 (2011), 479–487.10.1007/s11200-011-0028-z
DOI: https://doi.org/10.2478/tmmp-2020-0005 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 63 - 80
Submitted on: Apr 30, 2019
|
Published on: Apr 24, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Marek Macák, Zuzana Minarechová, Róbert Čunderlík, Karol Mikula, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.