Have a personal or library account? Click to login
Finite Volume Scheme for AMSS Model Cover

References

  1. [1] ALVAREZ, L.—GUICHARD, F.—LIONS, P.-L.—MOREL, J.-M.: Axioms and fundamental equations of image processing, Arch. Rational Mech. Anal. 123 (1993), 199–257.10.1007/BF00375127
  2. [2] BARLES, G.—SOUGANIDIS, P. E.: Convergence of approximation schemes for fully nonlinear second order equations,Asymptotic Anal. 4 (1991), 271–283.10.3233/ASY-1991-4305
  3. [3] CARLINI, E.—FERRETTI, R.: A Semi-Lagrangian approximation for the AMSS model of image processing, Appl. Numer. Math. 73, (2013), 16–32.10.1016/j.apnum.2012.07.003
  4. [4] CATTÉ, F.—LIONS, P.-L.—MOREL, J.-M.—COLL, T.: Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal. 29 (1992), 182–193.10.1137/0729012
  5. [5] CHEN, Y.-G.—GIGA, Y.—GOTO, S.: Uniqueness and existence of viscosity solutions ofgeneralized mean curvature flow equations,J.Differ. Geom. 33 (1991), 749–786.10.4310/jdg/1214446564
  6. [6] DECKELNICK, K.—DZIUK, G.: Convergence of numerical schemes for the approximation of level set solutions to mean curvature flow,In:Numerical methods for viscosity solutions and applications (Heraklion, 1999). (Maurizio Falcone, ed. et al.), Ser. Adv. Math. Appl. Sci. Vol. 59, World Sci. Publ., River Edge, NJ, 2001, pp. 77–93.10.1142/9789812799807_0005
  7. [7] EVANS, L.—SPRUCK, J.: Motion of level sets by mean curvature. I,J. Differ.Geom. 33 (1991), 635–681.10.4310/jdg/1214446559
  8. [8] EYMARD, R.—HANDLOVIČOVÁ, A. H.—MIKULA, K.: Study of a finite volume scheme for regularized mean curvature flow level set equation, J. Numer. Anal. 31 (2011), no. 3, 813–846.10.1093/imanum/drq025
  9. [9] EYMARD, R.—GALLOUËT, T.—HERBIN, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: A scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal. 30 (2010), no. 4, 1009–104310.1093/imanum/drn084
  10. [10] LINDEBERG, T.: Scale-space theory in computer vision.In:The Kluwer International Series in Engineering and Computer Science. Vol. 256, Kluwer Academic Publishers, Dordrecht, 1993.
  11. [11] LINDEBERG, T.: Generalized Gaussian scale-space Axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space, J. Math. Imaging Vision 40 (2011), no. 1, 36–81.10.1007/s10851-010-0242-2
  12. [12] MIKULA, K.—ŠEVČOVIČ, D.: Solution of nonlinearly curvature driven evolution of plane curves, Appl. Numer. Math. 31 (1999), 191–207.10.1016/S0168-9274(98)00130-5
  13. [13] MIKULA, K.—URBÁN, J.—KOLLÁR, M.—AMBROZ, M.—JAROLÍNEK, J.— ŠIBÍK, I. —ŠIBÍKOVÁ, M.: An automated segmentation of natura 2000 habitats from sentinel-2 optical data, Discrete and Continuous Dynamicla Systems Ser. S. (to appear)
  14. [14] OSHER, S.—FEDKIW, R.: Level set methods and dynamic implicit surfaces.In: Applied Mathematical Sciences, Vol. 153, Springer-Verlag, New York, NY, 2003.10.1007/b98879
  15. [15] OSHER, S.—SETHIAN, J. A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,J. Comput.Phys. 79 (1988), 12–49.10.1016/0021-9991(88)90002-2
  16. [16] PERONA, P.—MALIK, J.: Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (1990), 629–639.10.1109/34.56205
  17. [17] POLAKOVIČOVÁ, Z.: Numerical Scheme for AMSS model for image processing. Diploma Thesis Dept. of Math and Descr. Geom. Fac. of Civil Engineering STU Bratislava, (2018). (In Slovak)
  18. [18] SAPIRO, G.—TANNENBAUM, A.: Affine invariant scale-space, Internat. J. Comput. Vision 11 (1993), 25–44.10.1007/BF01420591
DOI: https://doi.org/10.2478/tmmp-2020-0004 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 49 - 62
Submitted on: Jul 11, 2019
Published on: Apr 24, 2020
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2020 Angela Handlovičová, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.