References
- [1] AIT-SAHALIA, Y.: Testing continuous-time models of the spot interest rate,Rev. Financial Stud. 9 (1996), 385–426.10.1093/rfs/9.2.385
- [2] BUČKOVÁ, Z.—HALGAŠOVÁ, J.—STEHLÍKOVÁ, B.: Short rate as a sum of two CKLS-type processes, International Conference on Numerical Analysis and Its Applications, Springer, Cham, 2016.10.1007/978-3-319-57099-0_25
- [3] CORZO SANTAMARIA, T.—SCHWARTZ, E. S.: Convergence within the EU: Evidence from interest rates,Econ. Notes 29 (2000), 243–266.10.1111/1468-0300.00032
- [4] CORZO SANTAMARIA, T.—BISCARRI, J. G.: Nonparametric estimation of convergence of interest rates: Effects on bond pricing, Spanish Econ. Rev. 7 (2005), 167–190.10.1007/s10108-004-0094-2
- [5] COX, J. C.—INGERSOLL JR., J. E.—ROSS, S. A.: An intertemporal general equilibrium model of asset prices, Econometrica (1985), 363–384.10.2307/1911241
- [6] FOUQUE, J. P.—PAPANICOLAOU, G.—SIRCAR, R.—SOLNA, K.: Multiscale stochastic volatility for equity, interest rate, and credit derivatives, Cambridge University Press, 2011.10.1017/CBO9781139020534
- [7] GIROVÁ, Z.—STEHLÍKOVÁ, B.: Effect of correlation on bond prices in short rate models of interest rates,Math. Morav. 22 (2018), 89–101.10.5937/MatMor1802089G
- [8] HALGAŠOVÁ, J.—STEHLÍKOVÁ, B.—BUČKOVÁ, Z.: Estimating the short rate from the term structures in the Vasicek model, Tatra Mt. Math. Publ. 61 (2014), 87–103.
- [9] KWOK, Y. K.: Mathematical models of financial derivatives, Springer-Verlag, Berlin, 2008.
- [10] MORENO, M.—PLATANIA, F.: A cyclical square-root model for the term structure of interest rates,Eur. J.Oper. Res. 241 (2015), 109–121.10.1016/j.ejor.2014.08.010
- [11] STEHLÍKOVÁ, B.—BUČKOVÁ, Z.: A three-factor convergence model of interest rates, Proceedings of ALGORITMY (2012), 95–104.
- [12] STEHLÍKOVÁ, B.— BUČKOVÁ, Z.: Dynamic correlation in a convergence model of interest rates,preprint.
- [13]ŠEVČOVIČ, D.—URBÁNOVÁ- CSAJKOVÁ, A.: Calibration of one factor interest rate models, J.Elect.Eng. 55 (2004), 46–50.
- [14]ŠEVČOVIČ, D.—URBÁNOVÁ- CSAJKOVÁ, A.: On a two-phase minmax method for parameter estimation of the Cox, Ingersoll, and Ross interest rate model,Cent. Eur. J. Oper. Res. 13 (2005), 169–188.
- [15] TENG, L.—EHRHARDT, M.—GÜNTHER, M.: The pricing of Quanto options under dynamic correlation, J. Comput. Appl. Math. 275 (2015), 304–310.10.1016/j.cam.2014.07.017
- [16] TENG, L.—EHRHARDT, M.—GÜNTHER, M.: On the Heston model with stochastic correlation, Int.J.Theor.Appl. Finance, 19 (2016), no. 6,10.1142/S0219024916500333
- [17] VASICEK, O.: An equilibrium characterization of the term structure, J. Financ. Econom. 5 (1977), 177–188.10.1016/0304-405X(77)90016-2
- [18]ŹÍKOVÁ, Z.—STEHLÍKOVÁ, B.: Convergence model of interest rates of CKLS type, Kybernetika 48 (2012), 567–586.
- [19] What is the euro area? | European Commission, online (1. 7. 2019): https://ec.europa.eu/info/business-economy-euro/euro-area/what-euro-area_en
- [20] EMMI—European Money Markets Institute | About EURIBOR, online (1. 7. 2019): https://www.emmi-benchmarks.eu/euribor-org/about-euribor.html
- [21] EMMI—European Money Markets Institute | Euribor Rates, online (1. 7. 2019): https://www.emmi-benchmarks.eu/euribor-org/euribor-rates.html
- [22] BRIBOR / BRIBID, online (1. 7. 2019): https://www.nbs.sk/sk/statisticke-udaje/financne-trhy/urokove-sadzby/urokove-sadzby-nbs/bribor-bribid-za-mesiac-po-dnoch
- [23] TALIBOR / TALIBID, online (1. 7. 2019): http://statistika.eestipank.ee/#/en/p/1010/r/1730
- [24] Latvijas Banka RIGIBOR, online (30. 4. 2018): https://www.bank.lv/statistika/dati-statistika/naudas-tirgus-index/rigibid-rigibor-vesturiskie-dati
- [25] Lietuvos Bankas, VILIBOR, online (30. 4. 2018): http://www.lb.lt/statistics/statbrowser.aspx?group=7222&lang=en&orient=horz