Have a personal or library account? Click to login
On One Application of Infinite Systems of Functional Equations in Function Theory Cover

On One Application of Infinite Systems of Functional Equations in Function Theory

By: Symon Serbenyuk  
Open Access
|Nov 2019

References

  1. [1] ANTONEVICH, A. B.: Linear Functional Equations: Operator Approach.Universitetskoe, Minsk, 1988. (In Russian)
  2. [2] ACEL, YA.—DOMBR, ZH.: Functional Equations with Several Variables. FIZMATLIT, Moscow, 2003. (In Russian)
  3. [3] BUSH, K. A.: Continuous functions without derivatives, Amer. Math. Monthly. 59 (1952), 222–225.10.1080/00029890.1952.11988110
  4. [4] CANTOR, G.:Über die einfachen Zahlensysteme, Zeitschrift Math. Phys. 14 (1869), 121–128. (In German)
  5. [5] DAUGAVET, I. K.: Aproximate Solution of the Linear Functional Equations. Izd-vo Leningr. un-ta, Leningrad, 1985. (In Russian)
  6. [6] KALASHNIKOV, A. V.: Some functional correlations, that the singular Salem function holds, Naukovyi Chasopys NPU im. M. P. Dragomanova. Ser. 1. Phizyko-matematychni Nauky [Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. 1. Phys. Math.] 9 (2008), 192–199. (In Ukrainian)
  7. [7] LIKHTARNIKOV, L. M.: Elementary Introduction to Functional Equations, Lan’, Saint Petersburg, 1997. (In Russian)
  8. [8] MARSALIA, G.: Random variables with independent binary digits, Ann. Math. Statist. 42 (1971), no. 2, 1922–1929.10.1214/aoms/1177693058
  9. [9] PRATSIOVYTYI, M. V.—KALASHNIKOV, A. V.: On one class of continuous functions with complicated local structure, most of which are singular or nondifferentiable, Trudy Instituta prikladnoi matematiki i mekhaniki NAN Ukrainy, 23 (2011), 178–189. (In Ukrainian)
  10. [10] PRATS’OVYTYI, M.V. — KALASHNIKOV, A. V.: Self-affine singular and nowhere monotone functions related to the Q-representation of real numbers, Ukrainian Math. J. 65, (2013), no. 3, 448–462. (In Ukrainian)10.1007/s11253-013-0788-4
  11. [11] PRATSIOVYTYI, M.: Fractal Approach to Investigation of Singular Probability Distributions, Vydavnytstvo NPU im. M. P. Dragomanova, Kyiv, 1998. (In Ukrainian)
  12. [12] RALKO, YU. V.: Representation of numbers by the Cantor series and some its applications, Naukovyi Chasopys NPU im. M. P. Dragomanova. Ser. 1. Phizyko-matematychni Nauky [Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. 1. Phys. Math.] 10 (2009), 132–140. (In Ukrainian)
  13. [13] SALEM, R.: On some singular monotonic functions which are stricly increasing,Trans. Amer. Math. Soc. 53 (1943), 423–439.10.1090/S0002-9947-1943-0007929-6
  14. [14] SERBENYUK, S. O.: On one nearly everywhere continuous and nowhere differentiable function, that defined by automaton with finite memory, Naukovyi Chasopys NPU im. M. P. Dragomanova. Ser. 1. Phizyko-matematychni Nauky [Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. 1. Phys. Math.] 13 (2012), no. 2, 166–182. (In Ukrainian); https://www.researchgate.net/publication/292970012
  15. [15] _______ Representation of numbers by the positive Cantor series: expansion for rational numbers, Naukovyi Chasopys NPU im. M. P. Dragomanova. Ser. 1. Phizyko-matematychni Nauky [Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. 1.Phys. Math.] 14 (2013), 253–267. (In Ukrainian); https://www.researchgate.net/publication/283909906
  16. [16] _______ On some sets of real numbers such that defined by nega-s-adic and Cantor nega-s-adic representations, Naukovyi Chasopys NPU im. M. P. Dragomanova. Ser. 1. Phizyko-matematychni Nauky [Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. 1. Phys. Math.] 15 (2013), 168–187. (In Ukrainian); https://www.researchgate.net/publication/292970280
  17. [17] _______ Defining by functional equations systems of one class a functions, whose arguments defined by the Cantor series. In: International Mathematical Conference “Differential Equations, Computational Mathematics, Theory of Functions and Mathematical Methods of Mechanics” dedicated to 100th anniversary of G. M. Polozh ly: Abstracts. Kyiv, 2014. pp. 121. (In Ukrainian); https://www.researchgate.net/publication/301765329
  18. [18] SERBENYUK, S. O.: Nega-̃Q-representation as a generalization of certain alternating representations of real numbers, Bull. Taras Shevchenko Natl. Univ. Kyiv Math. Mech. 1 (2016), no. 35, 32–39. (In Ukrainian); https://www.researchgate.net/publication/308273000
  19. [19] _______ Functions, that defined by functional equations systems in terms of Cantor series representation of numbers, Naukovi Zapysky NaUKMA 165 (2015), 34–40. (In Ukrainian); https://www.researchgate.net/publication/292606546
  20. [20] _______ Continuous functions with complicated local structure defined in terms of alternating Cantor series representation of numbers, Zh. Mat. Fiz. Anal. Geom. 13 (2017), no. 1, 57–81.10.15407/mag13.01.057
  21. [21] _______ Non-Differentiable functions defined in terms of classical representations of real numbers, Zh. Mat. Fiz. Anal. Geom. 14 (2018), no. 2, 197–213.10.15407/mag14.02.197
  22. [22] SERBENYUK, S.: On one fractal property of the Minkowski function,Rev.R. Acad. Cienc. Exactas FSPs. Nat. Ser. A, Math. RACSAM 112 (2018), no. 2, 555–559. doi:10.1007/s13398-017-0396-510.1007/s13398-017-0396-5
  23. [23] SERBENYUK, S. O.: Preserving of Hausdorff-Besicovitch dimension by the monotone singular distribution functions. In: The Second Interuniversity Scientific Conference on Mathematics and Physics for Young Scientists: Abstracts, Kyiv, 2011, pp. 106–107. (In Ukrainian); https://www.researchgate.net/publication/301637057
  24. [24] _______ On one function, that defined in terms of a nega-̃Q-representation, from a class of functions with complicated local structure. In: The Fourth All-Ukrainian Scientific Conference of Young Scientists on Mathematics and Physics: Abstracts. Kyiv, 2015, pp. 52. (In Ukrainian); https://www.researchgate.net/publication/301765100
  25. [25] _______ On two functions with complicated local structure. In :The Fifth International Conference on Analytic Number Theory and Spatial Tessellations: Abstracts, Kyiv: Institute of Mathematics of the National Academy of Sciences of Ukraine and Institute of Physics and Mathematics of the National Pedagogical Dragomanov University, 2013, pp. 51–52. https://www.researchgate.net/publication/
  26. [26] _______ On one class of functions with complicated local structure,Šiauliai Math. Semin. 11 (2016), no. 19, 75–88.
  27. [27] _______ Representation of real numbers by the alternating Cantor series, Integers 17 (2017), no. A15, pp. 27.
  28. [28] SERBENYUK, S. O.: Nega-̃Q-representation of real numbers. In: International Conference “Probability, Reliability and Stochastic Optimization”: Abstracts, Kyiv, Taras Shevchenko National University of Kyiv, 2015, pp. 24. https://www.researchgate.net/publication/
  29. [29] _______ On one nearly everywhere continuous and nowhere differentiable function, that defined by automaton with finite memory. In: International Scientific Conference “Asymptotic Methods in the Differential Equations Theory”: Abstracts, Kyiv, 2012, pp. 93. (In Ukrainian); https://www.researchgate.net/publication/301765319
  30. [30] TURBIN, A.—PRATSIOVYTYI, M.: Fractal Sets, Functions, Probability Distributions, Naukova Dumka, Kyiv, 1992. (In Russian)
  31. [31] ZAMFIRESCU, T.: Most monotone functions are singular,Amer. Math. Mon. 88 (1981), 47–49.10.1080/00029890.1981.11995183
DOI: https://doi.org/10.2478/tmmp-2019-0024 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 117 - 144
Submitted on: Jul 27, 2016
Published on: Nov 15, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Symon Serbenyuk, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.