Have a personal or library account? Click to login
How to Obtain Maximal and Minimal Subranges of Two-Dimensional Vector Measures Cover

How to Obtain Maximal and Minimal Subranges of Two-Dimensional Vector Measures

Open Access
|Nov 2019

References

  1. [1] BIANCHINI, S.—CERF, R.—MARICONDA, C.: Two-dimensional zonoids and Chebyshev measures, J. Math. Anal. Appl. 211 (1997), 512–526.10.1006/jmaa.1997.5486
  2. [2] CANDELORO, D.—MARTELLOTTI, A.: Geometric properties of the range of two-dimensional quasi-measures with respect to the Radon-Nikodym property, Adv. Math. 93 (1992), 9–24.10.1016/0001-8708(92)90023-E
  3. [3] DAI, P .—FEINBERG, A.: On maximal ranges of vector measures for subsets and purification of transition probabilities, Proc. Amer. Math. Soc. 139 (2011), 4497–4511.10.1090/S0002-9939-2011-10860-8
  4. [4] LEGUT, J.—WILCZYŃSKI, M.: How to obtain a range of a nonatomic vector measure in2, J. Math. Anal. Appl. 394 (2012), 102–111.10.1016/j.jmaa.2012.04.062
  5. [5] LEHMANN, E. L.—ROMANO, J. P.: Testing Statistical Hypotheses. Springer Science + Business Media. Inc., New York, 1971.
  6. [6] LYAPOUNOFF, A. A.: Sur les fonctions-vecteurs complètement additives, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4 (1940), 465–478. (In Russian)
  7. [7] NEYMAN, A.: Decomposition of ranges of vector measures,IsraelJ.Math. 40 (1981), 54–64.10.1007/BF02761817
DOI: https://doi.org/10.2478/tmmp-2019-0022 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 85 - 90
Submitted on: Feb 5, 2018
|
Published on: Nov 15, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Jerzy Legut, Maciej Wilczyński, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.