Have a personal or library account? Click to login
Generalized Derivative and Generalized Continuity Cover
By: Ivan Kupka  
Open Access
|Nov 2019

References

  1. [1] AMBROSIO, L.—KIRCHHEIM, B.: Rectifiable sets in metric and Banach spaces,Math. Ann. 318 (2000), 527–555.10.1007/s002080000122
  2. [2] AVERSA, V.—PREISS, D.: Lusin’s theorem for derivatives with respect to a continuous function, Proc. Amer. Math. Soc. 127 (1999), 3229–3235.10.1090/S0002-9939-99-05086-8
  3. [3] BILET, V.—DOVGOSHEY, O.—KÜÇÜKASLAN, M.: Uniform boundedness of pretan-gent spaces, local constancy of metric valued derivatives and strong right upper porosity at a point,J. Anal. 21 (2013), 31–55.
  4. [4] BORSÍK, J.: Bilateral quasicontinuity in topological spaces, Tatra Mt. Math. Publ. 28 (2004), 159–168.
  5. [5] _______ On the points of bilateral quasicontinuity of functions, Real Anal. Exchange 19 (1993/1994), 529–536.10.2307/44152402
  6. [6] BORŚIK, J.—HOLÁ, L’.—HOLÝ, D.: Baire spaces and quasicontinuous mappings, Filomat 25 (2011), 69–83.10.2298/FIL1103069B
  7. [7] DEIMLING, K.: Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1985.10.1007/978-3-662-00547-7
  8. [8] DOVGOSHEY, O.—MARTIO, O.: Tangent spaces to general metric spaces, Rev. Roumaine Math. Pures Appl. 56 (2011), 137–155.
  9. [9] ENGELKING, R.: General Topology. PWN, Warszaw, 1977.
  10. [10] GROSSMAN, M.—KATZ, R.: Non-Newtonian Calculus (7th ed.), Mathco, Rockport, Massachusetts, 1979.
  11. [11] KUPKA, I.: Topological generalization of Cauchy’s mean value theorem, Ann. Acad. Sci. Fenn. Math. Diss. 41 (2016), 315–320.10.5186/aasfm.2016.4120
  12. [12] _______ On similarity of functions,Top.Proc. 36 (2010), 173–187.
  13. [13] _______ Similar functions and their properties, Tatra Mt. Math. Publ. 55 (2013), 47–56.10.2478/tmmp-2013-0018
  14. [14] _______ Measurability of similar functions, Ann. Acad. Sci. Fenn. Math. Diss. 42 (2017), 803–808.10.5186/aasfm.2017.4246
  15. [15] LEE, P. Y.—TANG, W. K.—ZHAO, D.: An equivalent definition of functions of the first Baire class, Proc. Amer. Math. Soc. 129 (2013), 47–56.
  16. [16] LEVINE, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.10.1080/00029890.1963.11990039
  17. [17] MARCINIAK, M.: Finitely continuous, Darboux functions, Real Anal. Exchange 19 (1993/1994), 394–413.
  18. [18] MATEJDES, M.: Quasicontinuous selections of upper Baire continuous mappings,Mat. Vesnik 62 (2010), 69–76.
  19. [19] LIGHT, G. L.: An introductory note on relative derivative and proportionality,Int. J. Contemp. Math. Sci. 1 (2006), 327–332.10.12988/ijcms.2006.06034
  20. [20] LYTCHAK, A.: Differentiation in metric spaces, Algebra i Analiz 16 (2004), 128–161.10.1090/S1061-0022-05-00888-5
  21. [21] O’MALLEY, R. J.: Baire* 1, Darboux functions, Proc. Amer. Math. Soc. 60 (1976), 47–56.10.2307/2041139
  22. [22] NEUBRUNN, T.: Quasicontinuity, Real Anal. Exchange 14 (1988–89), 259–306.10.2307/44151947
  23. [23] NJÅSTAD, O.: On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970.10.2140/pjm.1965.15.961
  24. [24] PAWLAK, R. J.: On some class of functions intermediate between the class B*1and the family of continuous functions, Tatra Mt. Math. Publ. 19 (2010), 135–144.
  25. [25] PIOTROWSKI, Z.: A survey of results concerning generalized continuity on topological spaces, Acta Math. Univ. Comenian. 52–53 (1987), 91–110; Algebra i Analiz 16 (2004), 128–161.
  26. [26] ROBERTSON, A. P.—ROBERTSON, W.: Topological Vector Spaces. Cambridge University Press, Cambridge, 1964.
DOI: https://doi.org/10.2478/tmmp-2019-0021 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 77 - 84
Submitted on: Dec 8, 2017
Published on: Nov 15, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Ivan Kupka, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.