Have a personal or library account? Click to login
Product of Measurable Spaces and Applications Cover
By: Roman Frič  
Open Access
|Nov 2019

References

  1. [1] ADÁMEK, J.: Theory of Mathematical Structures. Reidel, Dordrecht, 1983.
  2. [2] BABICOVÁ, D.: Probability integral as a linearization, Tatra Mt. Math. Publ. 72 (2018), 1–15.10.2478/tmmp-2018-0017
  3. [3] BABICOVÁ, D.—FRIČ, R.: Real functions in stochastic dependence. Tatra Mt. Math. Publ. 74 (2019), 47–56.10.2478/tmmp-2019-0018
  4. [4] DVUREČENSKIJ, A.—PULMANNOVÁ, S.: New Trends in Quantum Structures.Kluwer Academic Publ. and Ister Science, Dordrecht and Bratislava, 2000.10.1007/978-94-017-2422-7
  5. [5] ELIAŠ, P.—FRIČ, R.: Factorization of observables, Internat. J. Theoret. Phys. 56 (2017), 4073–4083.10.1007/s10773-017-3436-1
  6. [6] FRIČ, R.: Remarks on statistical maps and fuzzy (operational) random variables,Tatra Mt. Math. Publ. 30 (2005), 21–34.
  7. [7] FRIČ, R.—PAPČO, M.: A categorical approach to probability, Studia Logica 94 (2010), 215–230.10.1007/s11225-010-9232-z
  8. [8] _______ Fuzzification of crisp domains,Kybernetika 46 (2010), 1009–1024.
  9. [9] _______ On probability domains, Internat. J. Theoret. Phys. 49 (2010), 3092–3100.10.1007/s10773-009-0162-3
  10. [10] _______ On probability domains II, Internat. J. Theoret. Phys. 50 (2011), 3778–3786.10.1007/s10773-011-0855-2
  11. [11] _______ On probability domains III, Internat. J. Theoret. Phys. 54 (2015), 4237–4246.10.1007/s10773-014-2471-4
  12. [12] _______ Upgrading probability via fractions of events, Commun. Math. 24 (2016), 29–41.10.1515/cm-2016-0004
  13. [13] _______ On probability domains IV, Internat. J. Theoret. Phys. 56 (2017), 4084–4091.10.1007/s10773-017-3438-z
  14. [14] _______ Probability from classical to fuzzy, Fuzzy Sets Syst. 326 (2017), 106–114.10.1016/j.fss.2017.06.003
  15. [15] GUDDER, S.: Fuzzy probability theory, Demonstratio Math. 31 (1998), 235–254.10.1515/dema-1998-0128
  16. [16] KOLMOGOROV, A. N.: Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer-Verlag, Berlin, 1933.10.1007/978-3-642-49888-6
  17. [17] LOÈVE, M.: Probability Theory. D. Van Nostrand Inc., Princeton, New Jersey, 1963.
  18. [18] MESIAR, R.: Fuzzy sets and probability theory, Tatra Mt. Math. Publ. 1 (1992), 105–123.
  19. [19] NAVARA, M.: Probability theory of fuzzy events. In: Fourth Conference of the European Society for Fuzzy Logic and Technology and 11 Rencontres Francophones sur la Logique Floue et ses Applications (E. Montseny, P. Sobrevilla, eds.), Universitat Politecnica de Catalunya, Barcelona, Spain, 2005, pp. 325–329.
  20. [20] PAPČO, M.: On measurable spaces and measurable maps, Tatra Mt. Math. Publ. 28 (2004), 125–140.
  21. [21] _______ On fuzzy random variables: examples and generalizations, Tatra Mt. Math. Publ. 30 (2005), 175–185.
  22. [22] _______ On effect algebras, Soft Comput. 12 (2008), 373–379.10.1007/s00500-007-0171-1
  23. [23] _______ Fuzzification of probabilistic objects. In: 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013) (2013), pp. 67–71.
  24. [24] RIEČAN, B.—NEUBRUNN, T.: Integral, Measure and Ordering. Kluwer Acad. Publ., Dordrecht-Boston-London, 1997.10.1007/978-94-015-8919-2
  25. [25] RIEČAN, B.—MUNDICI, D.: Probability on MV-algebras. In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), North-Holland, Amsterdam, 2002, pp. 869–910.10.1016/B978-044450263-6/50022-1
  26. [26] ZADEH, L. A.: Probability measures of fuzzy events, J. Math. Anal. Appl. 23 (1968), 421–427.10.1016/0022-247X(68)90078-4
DOI: https://doi.org/10.2478/tmmp-2019-0018 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 47 - 56
Submitted on: May 23, 2019
Published on: Nov 15, 2019
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Roman Frič, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.